IATE API

Reference Manual

December 2001

Copyright © 1998-2001
InnoSys

INCORPORATED

3095 Richmond Pkwy, Ste 207
Richmond, CA 94806

+1 510 222-7717

This manual and the software described in it are copyrighted, with all rights reserved. Under
the copyright laws, this manual or the software may not be copied, in whole or in part,
without the written consent of InnoSys Incorporated.

NO WARRANTIES OF ANY KIND ARE EXTENDED BY THISDOCUMENT. The
information herein and the IATE™ products themselves are furnished only pursuant to and
subject to the terms and conditions of a duly executed Product License.

InnoSys SPECIFICALLY DISCLAIMSALL WARRANTIES, WHETHER IMPLIED OR
EXPRESSED, INCLUDING BUT NOT LIMITED TO THOSE OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. InnoSys has no responsibility, financial

or otherwise, for any result of the use of this document and/or the associated product, including
direct, indirect, special and/or consequential damages. The information contained hereinis
subject to change without notice.

IATE isatrademark of InnoSys, Inc. Microsoft®, Windows®, Windows NT®, Windows®
2000, Windows® ME, Windows® 98, Windows® 95, and Visual Basic are either registered
trademarks or trademarks of Microsoft Corp. Sun™, Sun Microsystems™, Solaris™, Netra™,
Sun Enterprise™, and Ultra™ are either registered trademarks or trademarks of Sun
Microsystems, Inc. SPARC® and UltraSPARC® are registered trademarks of SPARC
International, Inc., licensed exclusively to Sun Microsystems, Inc.in the United States and other
countries. Products bearing SPARC trademarks are based upon an architecture devel oped by
Sun Microsystems, Inc UNIX isaregistered trademark of The Open Group.

Apple and Macintosh are registered trademarks of Apple Computer, Inc. All other

product names are either registered trademarks or trademarks of their respective holders.

INSCC-QP cards have been tested and found to comply with the limits for CE conformity; for
Class B digital devices, pursuant to Part 15 of the FCC Rules; for the Japanese VCCI standards;
and for similar standards. The FCC Class B approval is deemed to be satisfactory evidence of
compliance with Canada’ s ICES-003 of the Canadian Interference-Causing Equipment
Regulations. All of these standards and limits are designed to provide reasonable protection
against harmful interference in aresidential installation. This equipment generates, uses and
can radiate radio frequency energy and, if not installed and used in accordance with the
instructions, may cause harmful interference to radio communications. However, thereis no
guarantee that interference will not occur in aparticular installation. If an INSCC-QP card does
cause harmful interference to radio television, or other reception, which can be determined by
turning the computer off and on, the user is encouraged to try to correct the interference by one
or more of the following measures:

* Reorient the recelving antenna.

» Increase the separation between the computer and receiver (radio or TV).

» Connect the computer into an outlet on a circuit different from that to which
the receiver is connected.

Shielded cables must be used with the INSCC-QP cards to insure compliance with emission
limits. Changes or modifications to the INSCC-QP not expressly approved by InnoSys could
void the customer’ s right to operate the equi pment.

CE Declaration of Conformity
According to EN 45014

Manufacturer’s Name and Address
INnoSys Incorporated

3095 Richmond Parkway, Suite 207
Richmond, CA 94806

Declares that the product:

Product Name: INSCC

Model Number: INSCC-QP

Conforms to the following Product Specifications:

EMC: EN 55022: 1994 Class B

EN 50082-1:1992

IEC 801-2:1984 - 4kV CD, 8 kV AD

IEC 801-3:1984 - 3V/m

IEC 801-4:1988 - 1 kV Power Lines, .5kV Signal Lines

following the provisions of the Electromagnetic Compatibility Directive.
It also meets the EN60950:1992 standard, including amendments 1, 2 and 3, relating to
the Low Voltage Directive (ITE).

Richmond, CA, USA Mike Ridenhour

June, 1996 President

Voluntary Control Council for Interference by
Information Technology Equipment

This equipment isin the 2nd Class category (information equipment to be used in aresidential
area or an adjacent area thereto) and conforms to the standards set by the VVoluntary Control
Council for Interference by Data Processing Equipment and Electronic Office Machines aimed
at preventing radio interference in such residential area.

When used near aradio or TV receiver, it may become the cause of radio interference.

Read the instructions for correct handling.

InnoSys Incorporated

3095 Richmond Parkway, Suite 207
Richmond, CA 94806

(510) 222-7717 Voice

(510) 222-0323 FAX
info@innosys.com

Contents

OVERVIEW OF THE AP ...ttt sttt sttt st st st e s st e s sabeesaees 1
SUPPORTED PLATFORMSuttiiiiittiissittiissstseesssbseessssssssssssssssssssssssassssssasssssssssssssessssssssssssnses 1
IATE INSTALLATION REQUIREMENTS ... uviiiitiiiitiieitieceteeestesesteessstesstessssaessbesessesssstessssesssnsessns 2
APPLICATION REQUIREMENTSttititieieteeesitesesttesstesssbesssstesssbesssssessbesssseessnsessssessssesssseessssessns 2
SUMMARY OF |ATE APl FUNCTIONS ...eeiiiiteiie ettt ettt st svae s s sabas s s s ssbae e s s ssban e e s snnnne s 3

APl LIBRARY REFERENCEoo oottt tie et s s sebe s s sate s sabessrnaen 4
N Y N 2 PO 4
N =0 = = N ORI 8
N 1 = O 1 TR 20
N =S O] =2 22
N ==Y o J SRR 24
LATEMVRITE . ettt ettt e et e ettt s e bt e s e be e e st e e e be e s satessabesseateesabessesesssabessabeessasessabesssntessbesessenas 28

IATECONTROL COMMANDS. ...ttt ettt s s st e sat e st e s sbessbee s saaeesnes 32
YA B =y AN = 1] =6 LR 33
APISETAPILOGGING......eeiiitie it eettte ettt ete e tee ettt e st s st e e s s aessabesssaaessbeesasaessabessbesssnbessabeessseeas 34
APISETDEBUGOUT ..ottt ettt ste s s stte s st ssete e s satessbes s s atessbessssasssabessabeessabessabesssnbessabessssens 35
YA B = 0= = T RO 37
F N 1S =3 1 1L TR 38
APISETIMISG ..ottt ettt et e ettt e st e st e e s e st e s sbe e e sbeessabeesabaessabessabesssntessabeessaens 40
YA B = S = = N RS 42
YA B = AN 02N N 43
APISETINOANS. ...ttt ettt et e et s bt e s ettt e st e s st e e s eaee s s besssbeessabeesabaessabessabesssntessabeesssens 45
YA LT I = = 1 LR 46
YA [T 1 O SO 47
PN LT o [0S 1) N 48
YN o L NS - TR 50
A PIGETTATHROTTLE ..o ctteieeciteee e eetteee e ettt ee s e sate e e s seabeeessaabeeessasbeeessastaeessasbesessasbenessastenessasrenessns 52
APIGETOBIECTCONFIG ...ttt eeteieeteeestee e st esseteesstesssbessssaessasessssasssbessssessssessasesssstessasessssenes 53
PN 1S = N Y X R 55
A P PRINTER ST AT .. ctttiie ittt et ittt e e e et e e e e st e e e e s aabe e e e easbeeeseasbeeessasbaeessastaeessasbeeessasbenessastenessasrenessnns 63
YA LN O 17N Y] =0 1 R 65
AAPIGETV ERSION.tiiiiteieitieiitee e sttt e setee s ettt e st esateessabessbessaaaessbessssesssabessaseessasessbesssntessabessssens 67
AP L SETHEARTBEAT .ottt et ee e sttt e et e s s tee s st esete e s st e s st essaaeessbesssbeessabeesaseessabessabesssntessabessssenas 68
A PISTARTIMIN 1eeiiiiteieeiiteee e eiteee e setee e e s sabeeesssabeeessasbesessasberessasbeeessastesessasbesessasbesessantenessasenessns 70
P Sy 1 10 L0 GO 71
APIRESETLOCAL ...ttt ettt ettt ettt s st e e s et e s s bt e e sbee s sabessaaaeesabessabesssnbeesabeessannas 75
A PIFORWARDRESETcoitttiieiitteee s eitteee s siatetesssabeeessasteeessasbesessasbesessasteeessasbesessastesessastenessasenessns 76
N e A4 TN . 77
PEER-TO-PEER IMESSAGESctiiiittieitieieteiestee e sttt s stesstesssstesssbessssesssbessaseessasessbesssnsessaressssnnns 79
APIQUERYAPPLIMSGei ittt ettt et ette e s e e st e e s sate s s bee e saaeesnbeeeanteesabeeenteeesnteeeseeesnneas 81
YA LT AN = = 1Y 82
APISENDAPPLIMSG ...ttt ettt ettt e sttt s e s st e e s st e s s beessaeessabessasaessabessabesssabessabeessnenas 84
AP FORCESEPERATESOCK ETS..eiiiiitteiesistteiesissteiesssssssesssssssssssssssssssssssesssssssessassssssssssssssssssssesssns 87

APPENDIX A: ERROR CODES........coooiiiiis e 88

ERROR -2002: SERVERUNREACHABLE / NOSERVERERRORccvieiiitiieeiirieessssreeessssreses s 838
ERROR -2003: OUTOFBUFFERERROR......ccciiittieeiitiiessssteiessssseessssssssasssssssssssssesssssssssesssssssassnns 89
ERROR -2004: OBJECTUNDEFINED / NAMEISBADoviiitiectee ettt 90
ERROR -2005: NAMEINUSE.......oiiiiitiiii ittt setee e s s et e e s s eabe e e s sesbeeesseabaeessasbeeessasbenessans 91
ERROR -2007: DATAERRORciiitie ettt ettt ettt et s e st e s st e s steesbes s sabessbesesaneas 92
ERROR -2008: NOTSTARTEDERRORoeiiiiiitiieiiiieeeeiiteeeesssteeessisreeessastesesssstesesssssesesssssenessans 93
ERROR -2009: BADVERSIONERROR......ccttiiiiiiiieciiteee s seiteee e ssitee e s sesteeessesteeessenbaeessasbesessasbenessnns 9
ERROR -2010: DIRECTIONV IOLATION ... utiiitieietieitieietessssessssessssssssssesssssessssessssessssessssessssenes 95
ERROR -2011: INTERCEPTERRORueiiitieitieiettiestiestesssteesstesssaessstesssseessaaessbesssnsessnsessssnnas 97
ERROR -2101: APINOFREECHANNEL / TOOMANY SESSIONS......ccciiiieirrieireeeiteeesresesreeesaeeas 98
ERROR -2102: APIBADCHANNEL / INVALIDREFNUM ...oviiiiiieieecetieieeceteee e ssteeesssireeesssnreeeseans 99
ERROR -2103: APIOVERRUNERR......ciiiittiiicetteie ettt sttt s s s e s s vae e s s s bae s s s ssban e s ssnbaneessananne s 100
ERROR -2201: INTERNALLOGICERROR........ciittiiiiittiie ettt ettt e s s e s sare e e s sbve e e s snreee s 102
ERROR -2205: HOSTUNREACHABLEcvviiiiitieiecetreeeestreeesstreeessaseessssseessssssessssnsssssssnssenens 103
ERROR -2207: SESSIONNOTCONFIGURED......ccccitieieieiteeeseesstessssessstessssessssesssssesssssesssessssns 104
ERROR ~2208: INOSOCKETcuttiieiiteiesisitseisssssseissssssessssssssssssssssssassssssssssssssssssssssssssssssssssssses 105
ERROR -2209: CANTCONNECTTOSERVERuteiiiiitreieeiieeiesiitseeesisseessissesssssssesssssssssssssssenes 106
ERROR -2210: UNEXPECTEDIMSGTYPE.....iiitiiiiteieieiestee e seesstessstes s stesssraessseesstesssnaessresssnns 107
ERROR -2211: WRITEFAILED ..o cteie ettt ettt ettt sttt saae s stes s enaessabne e 108
ERROR -2212: READFAILED.....cciiiiitiieiiitieee e eitteee s etreeesssseeessssesssssssesessssessssnssessssssessssnssenens 109
ERROR -2214: OPENBLOCKEDcccvvtiiiiitteieiiitreeeeiiseeessssseessssssssssassesssssssesssssssssssssssssssssssnes 110
ERROR -2215: SESSIONDISCONNECTEDcuviiieteieieieiteseseesssessssessssessssessssssssssesssssnssssesssses 111
ERROR -2216: NOTIMPLEMENTEDcciiiittiieiiitreeeeiireeesisseeessssseessssssssssssssssssssssssssssssssessssssens 112
ERROR -2217: TOOMUCHDATAQUEUEDociiitieitieecteeectteeeteeecteeestesssneeesareesreeesnreesreeenns 113
ERROR -2218: TOOMANY CONNECTIONS.......tteieiitriiessseriessssssessssssssssssssssssssssssssssssssessssssess 114
ERROR ~2404: INVALIDTASK ..oetiieieitieieeiesteeseteeesaisstessssaessbessssesssnbessasessssessssesssssesssessssns 115
APPENDIX B: BACKGROUND INFORMATION ON THE GATEWAY ...coovveviveiee 116
TERMINAL AND PRINTER DEVICE OBJIECTS .. uvieitieeeteisstieseteeestesstesssstessbessssesssnaesssnessssenas 116
DY NAMIC OBJIECTS ..ttt iteieiteeesttisstessssessstessssessssatssbessassessabessssessssessasessssesssasesssssessesessssns 117
APPENDIX C: DESCRIPTION OF HOST TRAFFIC ... 118
APPENDIX D: SHARING A TA oottt ettt ettt tes st ssbe s s sbes s sbae s sabessbeeeans 120
CINTERCEPT” IMODEci it i ittie ittt etee e st ee e et e s st e e stee s st e s s eaeessabeesbesssabeesabesssabessbesssntessaressssenns 120
B 1AV = = B 1Y/ o]] = O 120
(1Y S 121
MESSAGE FORWARDINGveiitiiiittieitiesstetsstessetesesaassstesssseessbessssesssbessasessssesssasesssssessssessssns 123
SAMPLE PROGRAM ...ttt ietttie ettt e s sttt e s sttt e e s st e e s s sbte s s s sabaessssbbessssbbesssasbeesssasbenesssnbeeesssnsens 124
APPENDIX E: THE IATE APl FOR VISUAL BASIC ... 125
THE IATE APl DLLSFOR VISUAL BASIC.. oottt sttt 125
SAMPLE PROGRAMS FOR VISUAL BASIC.....uviiii ittt st s 125
USING THE IATE APl IN VISUAL BASIC ..uveiiiiteeie ettt e s 129
IATE APl FUNCTIONS IN VISUAL BASIC .uvciiiiieeie ettt ettt s s s 130
“HELPER FUNCTIONS’ IN THE SAMPLE APPLICATIONS FOR VISUAL BASIC.....ceevveeeeeee, 132
USER-INTERFACE FUNCTIONS IN THE SAMPLE APPLICATIONS FOR VISUAL BASIC................ 137
THE“TIMER OBJECT” IN THE SAMPLE APPLICATIONS FOR VISUAL BASICcoeoevviieeiiiieeens 139

Overview of the API

ThelATE Application Programming I nterface (API) enables an applications program to
communicate with an Airline Computer Reservation System (CRS), through an InnoSys IATE
Gateway.

The API provides a set of program function in the C language, supplied as adynamic link library
(DLL) in Windows, or a static library on UNIX platforms.

The APl communicates with the IATE Gateway via TCP/IP protocols. The Gateway
communicates with the airline host via TCP/IP, ALC, or X.25. See the Gateway documentation
for information about Gateway configuration and communications.

Supported Platforms

The API is supported on the following platforms:

* Windows 2000 (initial release or Service Pack 1).
* Windows NT4 (Service Pack 3 or later).

* Windows 98 (First or Second edition).

* Windows ME (Millennium).

* Windows 95.

Sun Solaris 2.4 and later (a.k.a. SunOS version 5.5.4 and later), including Solaris 7 and 8
(ak.a Solaris2.7and 2.8.)

Contact InnoSys if you require information about API availability for other UNIX or Linux
platforms.

IATE Installation Requirements

The current APl communicates with Version 2.x.x IATE gateways on Windows 2000,
Windows NT4, or Solaris.

The API can also communicate with Version 3.3 or later of the IATE Gateway for
Apple Macintosh, with IATEtcp version 2.2b8 or higher.

Application Requirements

The IATE supports single-threaded applications on both Windows and UNIX. The current API
supports multithreaded applications on Windows only. At thistime, the Windows version of the
APl isthe only version that is guaranteed to be thread safe.

Since The UNIX version of the API is not guaranteed to be thread safe, it does not support
multithreaded applications on UNIX. However, the UNIX API can be used with multiple
processes.

For related information on multithreaded or multiprocess applications, please refer to the
description of the APIForceSeparateSockets command in the lateControl section of this
document.

Summary of IATE API Functions

These functions are described more fully in subsequent sections of this document.

Function:

Purpose:

Function:

Purpose:

Function:
Function:

Purpose:

Function:
Purpose:

Function:

Purpose:

Function:
Purpose:

|ateStart

lateStart initializesthe API. The application calls | ateStart once, before
calling any of the other API functions below. The application must also call
lateStop once before terminating.

lateOpen

lateOpen opens a communication session through which the application
communicates with a TA object on the airline host, viathe IATE Gateway.
After opening a session with lateOpen, the application can | ateRead or
lateWrite to communicate, or lateControl to control various options on the
session. For each session opened with | ateOpen, the application should later
call 1ateClose to close the session.

|ateRead
lateWrite

The application uses lateWrite and | ateRead to send and receive messages
from the airline host, viathe IATE Gateway. These functions communicate
on aTA object which the application established through lateOpen.

| ateContr ol

lateControl handles several special commands, with which the application
can query and control various options related to the operation of the API, the
Gateway, or aparticular TA object. SeethelateControl section of this
document for information about the various commands available.

|ateClose

The application uses thisto release a TA object, when the application is no
longer using it. (Thisfunction isthe counterpart to lateOpen.)

| ateStop

The application uses this to release its connection to the API, when the
application is about to terminate, or when the application has no further use
for the API. (Thisfunction isthe counterpart to | ateStart.)

API Library Reference

This section describes the APl functions in detail.

lateStart
Summary:
| ong
lateStart (
I ong install _handl ers,
| ong dunmy,

unsi gned char *buff);

Purpose:

lateStart initializes the API, preparing it for subsequent API function calls.

Usage:

The application calls | ateStart before lateOpen. If lateStart succeeds,
it returns a start code value, which the application should passin any
subsequent callsto lateOpen.

Under normal conditions with avalid IATE software installation, 1ateStart
isnot expected to fail. If lateStart fails and returns an error code,

the application cannot use the API. The application should not call 1ateOpen
or any other API functions after lateStart returns an error code. Any such
callswould aso return errors, because the API has not been initialized.

Arguments:
install _handl ers

This argument tells the APl whether or not to
use itsown signal handlers:

1 tellsthe API to useits own signal handlers.
Thisisthe recommended value.

0 meansthe application intends to supply its own
signal handlers. Thisisnot recommended.

dunmy

This argument isignored.
(Itisincluded for backwards compatibility with older
applications that used previous versions of the IATE API.)

buf f

This string argument optionally specifies the Gateway host name or |P address,
and the network service or port on which the Gateway listensfor API client
connections. The API assigns these as default values for subsequent calls

to lateOpen.

lateStart does not connect to the Gateway. The values specified here
apply only to subsequent 1 ateOpen calls that do not explicitly specify the
Gateway host address and network service or port.

If the application does not specify the host name or IP address in either the
lateStart call or an lateOpen call, the default isthe local host on which the
application is running.

If the application does not specify the network service name or port number
in either the lateStart call or an lateOpen call, the default is“ialcserver”,
which is normally associated with the IATE default network port number, 1413.

If aservice nameis specified, it must be defined in the system's network “ services’
file. Refer to Appendix | for information about the “services’ file.

This argument takes one of these four formats:

ablank string (not aNULL pointer)

"@Host\\ Service\\"

This specifies the Gateway host address, and the
network service name or port number for connection
to the Gateway.

Substitute the Gateway host's name, or IP address,
in place of “Host ” above.

In place of “Ser vi ce” above, substitute the network
service name, or network port number, for connection
to the Gateway.

"@Host\\"

This specifies the Gateway host name or |P address.

(The unspecified service name defaults to “ialcserver”,
which is normally associated with the IATE default
network port number, 1413.)

"Servi ceNane\ \ "

This specifies the network service name or port number
for connection to the Gateway.

(The unspecified Gateway host name defaults to the
local host on which the application is running.)

Note the double backslashes between the fields in the arguments above.
Thisis a C-language convention: Each successive pair of backslashes \\
equates to asingle backsash in the final string. Programs using the IATE API
for Visual BASIC would use single backslashes rather than pairs.

Returns:

<0 Error.

>0 Success.
The return value is a session reference number for usein

subsequent lateRead, lateWrite, lateControl, or lateClose cals.

Example:

| ong start_code;
start_code = lateStart (1, 0, "@w2\\ial cserver\\");

lateOpen

Summary:

#i ncl ude "U_API . h"

| ong
| at eOpen(
| ong start_code,
| ong cnd,
unsi gned char *buff);

Purpose:

lateOpen establishesalink to a TA object at the IATE Gateway,
for communication with the airline reservation host.

Usage:

The application calls 1ateStart before calling 1ateOpen.
(Seethe lateStart information above.)

The value returned from a successful 1ateOpen call isknown asa

reference number (or refnum). The application passes the refnum to all
subsequent lateRead, lateWrite, lateControl, or lateClose calls for this object.
Objects are defined in the gateway configuration file, and map each object name

toan A TA line address. Refer to the gateway installation manual for more
details on object names.

Arguments:

start _code

This argument should be set to the
start-code value that | ateStart returned.

cnd
This argument should be set to one of the following four commands:

API Li nkToNane -tolink to an object by its name or group-name.
API Li nkToTa - to link to an object by specifyingan 1A & TA.
API Li nkToDyCrt -tolink toa"dynamic CRT" object.

API Li nkToDyPrt -tolink toa"dynamic printer" object.

buf f

This argument contains a string, which specifies the TA object
(or group of objects) on which the application requests a connection.

The format and contents of this string argument depend on the type of connection
requested, as indicated by the value of cmd. Explanations and examples are
given below.

The contents of buff specify the TA object to connect; and may also specify the
Gateway host name or IP address, and the network service or port on which the
Gateway listensfor API client connections.

If the application does not specify the host name or IP addressin the lateOpen
call, it defaults to the value specified in the earlier call to lateStart, or to the
local host on which the application is running.

If the application does not specify the network service name or port number

in the lateOpen call, it defaults to the value specified in the earlier call to | ateStart,
or to “ialcserver” (which is normally associated with the IATE default

network port number, 1413).

If aservice nameis specified, it must be defined in the system's network “ services’
file. Refer to Appendix | for information about the “services’ file.

Note:
The contents of buff are not preserved by the lateOpen call.

For the APILinkToName command:

If cmd is APILinkToName, buff containsa string
which can specify the following values:

a Gateway host name,
a TCP/IP Service name, and
aTA object name or group name.

ntax:
The buff string argument takes one of these formats:

" @Host Nane\ \ Servi ceNane\ \ bj ect O G oupNane"

Substitute the Gateway host's name, or |P address, in place of
“Host " above.

In place of “Ser vi ce” above, substitute the network service
name, or network port number, for connection to the Gateway.

Specify aTA Object or Group name in place of
“Obj ect O G oupNane”.

"@\ Servi ceNane\\ Obj ect O G oupNane"

This syntax omits the host address. It defaults to the host name
or IP address that the application previously specified in the
lateStart call, or to the local host on which the application is running.

In place of “Ser vi ce” above, substitute the network service name,
or network port number, for connection to the Gateway.

Specify a TA Object or Group name in place of
“Obj ect O G oupNane”.

" @ost Nanme\ \ \ \ Cbj ect O G oupNane"

This syntax omits the network service/port. It defaultsto the
service name or port number that the application previously
specified in the lateStart call, or to “ialcserver” (which is normally
associated with the IATE default network port number, 1413).

"@\\\\\ bj ect O G oupNane"
This syntax omits the HostName and ServiceName.
The API uses the names that the application previously
specified in the lateStart call.

10

(Note the double backslashes between the fields in the arguments above.
Thisis a C-language convention: Each successive pair of backslashes \\
equatesto asingle backslashin the final string. Programs using the
IATE API for Visual BASIC would use single backslashes rather than pairs.)

The TA Object or Group Name specifieswhich TA object the application
wishes to use for communications with the airline host. This must match
one of the object or group names listed in the Gateway's configuration.

If the application specifiesa TA Object name, the lateOpen call
requests a connection to that TA object. If the application specifies
a Group name, this requests a connection to any object in the
specified group. Refer to the IATE Gateway documentation for
information about how to configure TA objects and groups.

For the APILinkToTa command:

The APILinkToTa command is generally not recommended.
APILinkToName isusualy appopriate.

If cmd isAPILinkToT a, buff contains a string that specifies an
IA and TA number (instead of an object or group name).

The Host and Service names can also be specified in the same way
asfor the APILinkToName command (see above).

Syntax / Example:

"@\ Host Nane\ \ Servi ceNane\ \ \ 040\ 020"

ThelA and TA values are characters specified in ALC code using octal
numeric values. In the example above, the IA value is 040 octal

(equal to 20 hexadecimal or 32 decimal), and the TA value is 020 octal
(equal to 10 hexadecimal or 16 decimal).

All C compilersallow octal character values, suchas "\ 040" and '\ 040’

as shown in the example above. Some compilers also support hexadecimal
character values using a different syntax, but this may not work in some cases,
so we recommend the octal format.

11

Optionally, the buff argument can also specify a port name,
immediately following the TA value in the string. The port name
resolves to a particular physical line. It's necessary to specify

the port name only if the Gateway has the same IA and TA configured
on multiple ports. The specified port name must match onethat is
specified in a Gateway configuration files PORT_NAME directive.

Syntax / Example:

"@\ Host Nane\ \ Servi ceNane\ \\ 040\ 020Por t Nane"

For the APILinkToDyCrt or APILinkToDyPrt command:

The APILinkToDyCrt and APILinkToDyPrt commands request
aconnection to a“dynamic” terminal or printer object, respectively.

A “dynamic” object is one that the Gateway configuration
specifieswith the TERMINAL _API or PRINTER_API object-type.

Dynamic objects are similar to named “groups’ of objects,
in the sense that the application requests a connection to
“any object” of the specified dynamic type.

If cmd isAPILinkToDyCrt or APILinkToDyPrt,
the application should specify the buff string
using the same syntax as for APILinkToName:

" @Host Nane\ \ Ser vi ceNane\ \ Obj ect O G oupNane"
(The Host and Service names are optional under the same
conditionsasfor APILinkToName. See the examples under
APILinkToName, above.)

For Dynamic objects, the specified Object Nameisjust a
placeholder. The API will not useit, but it must be specified anyway.

12

Returns:

If lateOpen succeedsin establishing alink to a TA object,
it returns a nonnegative value.

If the link was not successful, |ateOpen returns a negative error value.
Refer to Appendix A for information about IATE API error values
and their causes.

lateOpen does not preserve the string argument that the caller

placed in buff. (If the caller will later re-use the string value that it
placed in buff, the caller may need to save the string value in a separate
buffer before calling 1ateOpen.)

On return, buff will contain a 2-byte value. Historically, this
indicated the IA and TA associated with the connected object.
Although thisindication is still valid in some cases, it is generaly

not recommended to use these returned IA and TA valuesin new
application code. If the application requires information about the
configured IAs and TAS, the preferred way to obtain such information
isto use lateControl with the API GetObjectConfig command.

Note:

The API normally enforces certain restrictions on lateOpen calls,
due to the nature of TCP socket connections.

It takes time to close down a TCP/IP socket gracefully.
Rapidly opening and closing sockets may be inefficient
on the system and network, and may cause problems
on some systems.

The API enforces a minimum time between consecutive
lateOpen calls. Theinterval required between successive
lateOpen calls can be adjusted using | ateContr ol with the
API SetOpenDelay command.

We strongly recommend that the open delay be set to
no less than 10 seconds.

13

See also:

lateControl function, APl SetOpenDelay command.

Appendix B: Background Information about the Gateway.

Example:

This example assumes two gateways, one running on a remote machine
and one running on the local machine along with the application program.

The application runs on system “gw1”. The gateway on that system has
the following objects defined:

| A TA type obj ect group

01 01 TERM NAL termil *x
01 02 TERM NAL_API term2 *
01 03 TERM NAL_API terml3 *
01 04 TERM NAL term4 groupl
01 05 TERM NAL ter mL5 groupl

The second gateway is running on a remote machine named “gw?2”
with the following objects defined:

02 01 TERM NAL ** group2
02 02 TERM NAL_API ternm2 group2
02 03 TERM NAL_API tern23 *x

02 20 TERM NAL tern220 **

02 05 TERM NAL ternm25 *

14

This program shows the ability of the API to connect to multiple gateways and
different types of objects. W€l assume that no other IATE applications are
running, so the configured objects are all available.

#i ncl ude <stdio. h>

#i ncl ude "U_API. h"

#i nclude "U APl typ. h"

#i ncl ude "U_API pros. pro"

/*
Initialize a list of TA object connection specifiers for |ateQOpen.
*/

#define NUM.OBJS 4
char *connection_specifiers[NUM OBJS] =

"@w2\\i al cserver 1\\t er n23", /* an object on a renote gateway */
"terml4", /* an object on a |ocal gateway */
"@wl\\i al cserver\\groupl", /* a request for an object in the group "groupl" */
"@wL\\i al cserver\\ dummy" /* a dynamic link */
H
unsi gned char
buf f [MAX_BUFF_SZ] , /* message buffer */
ctrl [CTRL_BLK_SZ] ; /* control bl ock: Cl, C2, EOW, CCC_OK, MORE */
/* (See the |ateRead docunentation) */
int userBreak(void); /* programterm nation function
(defined bel ow) */
mai n()
{
struct u_link_response
config; /* object configuration information */
| ong
start_code, /* start-code returned fromlateStart */
result_| at eRead, /* return value fromlateRead */
result_lateWite, /* return value fromlateWite */
ref nuns[NUM_OBJS] ; /* reference nunber for each connection */
short
open_del ay; /* paraneter for APl Set OQpenDel ay conmmand */
int
conn_i ndex = 0, /* index to list of connections */
num conns = 0; /* nunber of connections */
/*

Initialize APl -
lateStart returns "start code"
whi ch nust be passed to |ateQOpen.

*/
start_code = lateStart(1, O, (unsigned char *)"");
if (start_code < 0)
exit(1);
el se

printf ("lateStart OK\n");

15

/*
Set the minimumtinme required between |ateCpen calls.
Do not set this time to |l ess than 10 seconds.

*/
open_del ay = 10; /* (seconds) */
I at eControl (
0,
API Set OpenbDel ay,
(unsigned char *) &open_del ay);
/*
Link to gateway running on renote machi ne "gw2".
(Host and service nanmes are required here.)
*/

ref nuns[num conns] =
| at eQpen(
start_code,
API Li nkToNaneg,
(unsigned char *) connection_specifiers[numconns]);
/* "@w2\\ial cserver1\\ternR3" */

num _conns++;

/*
Link to gateway running on the |ocal machine "gwl".
(Host and service nanes are optional here.)
*/
ref nuns[num conns] =
| at eQpen(
start_code,

API Li nkToNane,
(unsi gned char *) connection_specifiers[numconns]);
[* "terml4" */

num _conns++;

/*
Link to renote gateway on
I A hexadeci mal 02 = octal \002,
TA: hexadeci mal 20 = octal \040.
When using | ateOpen with APILinkToTa,
the A and TA are the ALC val ues converted to octal format,
for proper enbedding in the object_name string.
*/
ref nuns[num conns] =
| at eQpen(
start_code,
APl Li nkToTa,

(unsi gned char *)connection_specifiers[numconns]);
[* "@w2\\i al cserver 1\\ 002\ 040" */

num conns++,

16

/*
Link to first free TAin group 1 on the local nachine "gwl".
This should result in alink to ternl5.

*/

ref nuns[num conns] =
| at eQpen(
start_code,
API Li nkToNaneg,
(unsigned char *) connection_specifiers[numconns]);
/* "@wl\\ial cserver\\groupl" */

num conns++,

/*
Dynamc link to a Dynam c CRT object on the |ocal machine:
This results in alink to "ternR2", since this is the first
dynam ¢ CRT. The "dummy" object-nane nmust be specified here
as a pl acehol der, although the APl does not use it.

*/

ref nuns[num conns] =
| at eQpen(
start_code,
APl Li nkToDyCr t,
(unsigned char *) connection_specifiers[numconns]);
/* "@wl\\ial cserver\\dumy" */

num conns++,

/*
For each TA object that was successfully Iinked,
send a nessage to the host.

*/

for (conn_index = 0; conn_index < num.conns; conn_index++)

if (refnums[conn_index] < 0)
printf (
"lateQpen failed (error %) for: %\n",
ref nuns[conn_i ndex],
connecti on_speci fiers[conn_i ndex]);
el se

/* Get the object's configuration information. */

I at eCont rol (
ref nuns[conn_i ndex] ,
API Get Obj ect Confi g,
(unsi gned char *) &config);

/* Display the object's A and TA. */

printf(
"Successful link to object A TA: %\n",
config.iata_str);

/* Send a nessage to the host. */

strcpy (buff, "I");
result _lateWite =
lateWite(
ref nuns[conn_i ndex] ,
strlen(buff),
buff);

17

if (result_lateWite < 0)
printf(
"lateWite failed (error %l)\n",
result_lateWite);

}
}
/*
Cycl e through the sessions and read the host responses.
See the | ateRead docunentation for details.
Note: This is not a conplete exanple.
Addi tional code, not shown in this exanple, should provide a way to
exit this loop. For exanple, in a console program a signal handler
could catch a Crl-C keystroke, call lated ose for the open sesssions,
and call lateStop before termnating this process.
*/
whil e (!userBreak()) /* loop until user requests termination */
for (conn_index = 0; conn_index < num.conns; conn_index++)
{
if (refnums[conn_index] > 0)
result_l| ateRead =
| at eRead(
ref nuns[conn_i ndex] ,
MAX_BUFF_SZ,
buff,ctrl);
if (result_lateRead == 0)
conti nue; /* no nessage received */
el se
{
if (result_lateRead < 0)
printf(
"lateRead failed (error %l)\n",
result_| at eRead) ;
ref nuns[conn_i ndex] = -1;
}
el se
{
/*
Nul | -term nate and display the received string
*/
buff[result_lateRead - 2] = '\0";
printf(
"Reply fromhost (refnum%l): %\n",
ref nuns[conn_i ndex] ,
buff);
}
}
}
}
}

18

int

user Br eak(voi d)

{

/*
This function should return a nonzero value if the
user has requested termnation of the program
After this function returns nonzero,
the caller should termi nate the program gracefully.

The body of this function is not shown here.

The means of detecting user input depends on the
platform (Wndows or UNI X), the type of application,
and choi ce of inplenmentation.

For exanple, in a console program this function could

work with a signal handler to detect a Crl-C keystroke.
After the user presses Crl-Cto ternminate the program
this function would return nonzero, and the caller

woul d proceed to terminate the program

*/
/*
I nsert code here, to return nonzero
if the user has requested programtermnation ...
*/
return O;

19

lateClose

Summary:

| ong
| at eCl ose(l ong refnum;

Purpose:

lateClose terminates a TA object link that was opened with | ateOpen.

Usage:

IATE applications should use | ateClose to close any open connections --
before the application terminates, or whenever the application has
finished using an open session.

A TA object accepts normal connections from only one application at atime.
(Thereis an exception to this. A second application can connect to an object
through the “ Shared TA” mechanism, but that is a special type of connection.)
After an application uses | ateOpen to connect, other applications cannot
establish normal connections to the object, until the first application calls

| ateClose to disconnect.

If the application failsto call lateClose, and leaves any TA object
connections open when it terminates, the open connections may not be
properly closed. (This may happen if the application crashes,

or if the application was not properly written.) In that case, the

connection may remain 'stuck’ open indefinitely, unless the Gateway is
configured to disconnect it after an inactivity timeout.

Arguments:

ref num

The reference number that 1ateOpen returned.

20

Returns:

Zero on success, or anegative error code. Refer to Appendix A
for information about IATE API error values and their causes.

Example:
| ong refnum
.rél.‘num= lateQpen(...);

i at eCl ose(refnum;

21

lateStop

Summary:

For Windows applications:

| ong
| at eSt op(l ong startcode);

For Solaris or other UNIX:

| ong
| at eSt op(voi d);

Purpose:

lateStop terminates the application's use of the IATE API.

Usage:

The application should call 1ateStop before terminating.
(lateStop isthe counterpart to | ateStart,
which the application called while starting up.)

Argument:

For the Windows version only:
startcode
Thisisthe start code value that | ateStart returned.

Applications running on Windows pass this value to | ateStop.
Applications running on UNIX do not pass this value to | ateStop.

22

Returns:

Zero on success, or a negative error code.

Refer to Appendix A for information about
IATE API error values and their causes.

Example:

| ong startcode;

startcode = lateStart(...);
/* For Wndows only: */

| at eSt op(startcode);

/* For UNI X only: */
| ateStop();

23

lateRead

Summary:

| ong
| at eRead(
| ong ref num
| ong nchars,
unsi gned char *buff,
unsi gned char *ctrl bl ock);

Purpose:

| ateRead reads message data that the Gateway has received from the airline host.

Usage:

If message datais already avail able when the application calls | ateRead,
it will return immediately.

If no message isimmediately available, lateRead will wait until a message or segment
arrives, or until atimeout expires. The application can specify the timeout by calling
lateControl with the API SetTO command. If the wait time expires with no message
datareceived, the call to lateRead will complete with areturn value of 0.

lateRead can read complete messages, or it can read individual message segments.

This depends on whether the application has selected message or segment reading mode.
(SeelateControl, APl SetM sg and API Set Segment.)

24

Arguments:
ref num

The reference number that 1ateOpen returned for this session.

nchars

The size of the buffer to receive data
Suggested value: MAX_BUFF_SZ.

buf f

Thisisthe buffer to receive data. If l1ateRead reads a message,
this buffer will contain the text of the message.

The message text in this buffer will not include the command characters,
the EOM, and the CCC indicator. They will be returned in ctrlblock.

Thereceived dataisin ASCII. (The Gateway handles character trandlation
from ALC to ASCII.)

ctrl bl ock

An additional buffer of size CTRL_BLK_Sz,
in which lateRead will store the following information:

ctrl bl ock[CTRL_C1]
The C1 character in ASCII.

ctrl bl ock[CTRL_C2]
The C2 character in ASCII.

ctrl bl ock[CTRL_EOM
The EOM character in ASCII.

25

ctrl bl ock[CTRL_CCC K]

1 if the CCC (message checksum) was valid,
0 if the CCCwasinvalid.

(If the CCC wasinvalid, the application
should discard the message.)
ctrl bl ock[CTRL_MORE]

1 if thismessageis not complete:
a subsequent call to lateRead
will return the next part of the message.

0 if thiscall to lateRead returned a
compl ete message.

Returns:

If lateRead returns any message datain buff, the function’ s return value
indicates the length of the message, plus 2. The additional 2 characters,

C1 & C2, are positioning characters in the message envelope, as described in
Appendix C: Description of Host Traffic.

lateRead returns zero if the timeout expired with no data available.

Negative return valuesindicate errors. Refer to Appendix A for information about
IATE API error values and their causes.

26

Examples:

(See examples in this document and the sample programs which come with the

IATE API package.)

unsi gned char
buf f [MAX_BUFF_SZ] ,
ctrl [CTRL_BLK S7];

| ong
ref num
nchars,
ret;

/*
/*

/*
/*
/*

2015 character nessage buffer */
control bl ock
Cl, C, EOW, CCC_OK, MORE */

successful lateQpen return val ue */
nchars = len of message plus 2 */
| at eRead return val ue */

| ateRead (refnum MAX BUFF_SZ, buff, ctrl);

27

lateWrite

Purpose:

lateWrite sends a message to the airline host.

Syntax:

| ong
lateWite(
| ong refnum
| ong nchars,
unsi gned char *buff)

Description:
ref num
The reference number that 1ateOpen returned for this session.
nchars
The size of the buffer containing data to send.
buf f
Thisisthe buffer containing data to send.

Thedataisin ASCII. (The Gateway handles character trandation
from ASCII to ALC.)

If the last character of the message datais an EOM character,
the APl sends the message to the host with that EOM.

If no EOM is supplied, the API sends the message with EOMC
(End Of Message — Complete).

28

Returns:

lateWrite returns a negative value if an error occurs. Refer to Appendix A for
information about IATE API error values and their causes.

Two errorsin particular, -2210 (DirectionViolation) and —2103 (APl Overrunkrr)

can occur as aresult of application design issues. For details, refer to the descriptions
of these errorsin Appendix A.

Example:

(See examples in this document and the sample programs which come with the
IATE API package.)

unsi gned char
buf f [MAX_BUFF_SZ] ;

| ong
ref num /* successful lateCpen return value */
ret; /* lateWite return value */
strcpy (buff, "1"); /* send an lgnore nessage to the host: */
ret = lateWite (refnum strlen(buff), buff);

29

lateControl

Summary:

| ong
| at eControl (
| ong ref num
| ong cnd,
unsi gned char *buff);

Purpose:

The lateControl function performs a number of different functions (specified by a
command-code parameter) -- such as setting various parameters for APl and Gateway
operation, obtaining configuration information from the Gateway, managing message
acknowledgment, and indicating printer status.

Arguments:

ref num
The reference number for the TA object connection
on which to perform a control command.

(This can be zero for certain commands which
do not require a TA object connection.)

cmd

A command code specifying the operation to perform.
See below.

buff

Buffer for input or output data, used with some commands.

30

Returns:

On success, lateControl returns zero, or a command-specific return value.
(Refer to the description of each command below.)

Onfailure, lateControl returns a negative error code.
Refer to Appendix A for information about IATE API error values and their causes.

31

lateControl Commands

The command code is the second of the three argument to lateControl. Thefirst lateControl
parameter isa TA object connection reference number (if required). The third argument isan
input or output parameter which depends on the particular command.

Some | ateControl commands operate on an established TA object connection. Such commands
reguire the connection reference number as the first argument to lateControl. Some other
commands do not operate on a particular object connection; for those commands the first
argument should be zero.

32

APISetApiDebug

Purpose:

ThislateControl command enables or disables API diagnostic output to the default or custom
output destination, as described below.

Arguments:

The first argument to | ateControl should be zero for this command, because this command does
not operate on a specific TA object.

The second argument to lateControl isthe API SetApiDebug command.

The third argument to lateControl is a bit-mask value specifying the diagnostic output levels to
enable. See Appendix G for adescription of each diagnostic output level. If the third
argument’ s value is zero, thisturns off all API diagnostic output.

If the third argument’ s value is nonzero, the API will generate the enabled diagnostic output to a
default or custom output destination. The default destination is the “standard output” which
works for console (text-mode) programs. A non-console application (such as a program that
uses a graphical user interface, or no on-screen user interface), or an application that requires a
different destination for diagnostic output, can use the API SetDebugOut command to define a
custom diagnostic output function.

See also:

API SetDebugOut
API SetApiL ogging

Example:

short val = Oxff;
| ateControl (0, APISetApiDebug, (unsigned char *) &val);

33

APISetApiLogging

Purpose:

ThislateControl command enables or disables API diagnostic output to alog file, as described
below.

Arguments:

The first argument to | ateControl should be zero for this command, because this command does
not operate on a specific TA object.

The second argument to lateControl isthe API SetApiDebug command.
The third argument to lateControl is a bit-mask value specifying the diagnostic output levels to
enable. See Appendix G for adescription of each diagnostic output level. If the third

argument’ s value is zero, thisturns off all API diagnostic output.

If the third argument’ s value is nonzero, the API will generate the enabled diagnostic output to a
file named “iatelog.log”.

See also:

API SetApiDebug

Example:

short val = Oxff;
lateControl (0, APISetApilLogging, (unsigned char *) &val);

34

APISetDebugOut

Purpose:

This command specifies an alternate function for displaying or processing any API diagnostic
output enabled by API SetApiDebug. See the sample program below and “testterm.c”
(supplied with the API distribution) for examples of an aternate output function.

Arguments:

The first argument to lateControl is zero, and the third argument specifies the
diagnostic output function.

The application supplies the output function. It isaformatted output function
which works like printf. It takes aformat string asits first argument, followed by
avariable argument list containing any additional output parameters.

The example below shows a typical implementation.

Example:

voi d test DebugQut (char *format_str, ...);
lateControl (0, APISetDebugQut, (unsigned char *) testDebugCQut);

#define MAX_DBG MSG LENGTH 255

voi d
t est DebugQut (char *format_str, ...)

char |ine[MAX DBG MSG LENGTH + 1];

/*
Format the output string and paraneters,

in the same manner as printf()
*/

va_list nmarker;

va_start (marker, format_str);

_vsnprintf (line, MAX DBG MSG LENGTH, format_str, nmarker);
va_end (marker);

35

/*
Qut put the string
*/

printf (line); /* (or use a custom output function) */

36

APISetOpenDelay

Purpose:

This command sets the delay, in seconds, required between successive | ateOpen calls.
Do not set this delay to less than 10 seconds.

It takes time to close down a TCP/IP socket gracefully. Rapidly opening and closing sockets
may be inefficient on the system and network, and may cause problems on some systems.

The API enforces a minimum time between consecutive | ateOpen calls.

The interval required between successive | ateOpen calls can be adjusted using
lateContr ol with the APl SetOpenDelay command.

Arguments:
The first argument to lateControl is zero.
The second argument is the API SetOpenDelay command.

The third argument specifies the delay time.
The delay time should not be set to less than 10 seconds.

Example:

short val = 10;
| ateControl (0, APISetQpenDel ay, (unsigned char *) &val);

37

APISetTO

Purpose:

This command sets or disables atimeout for | ateRead.

When the application calls | ateRead, the call will return after message data becomes
available from the host, or the read timeout expires (whichever occurs first).

The read timeout defaultsto 1 second. The application can use APISetTO
to control the timeout, as described below.

If the blocking interval expires with no message received, the call to lateRead
returns zero.

Arguments:

The first argument to | ateControl specifiesthe TA object connection to which this
command applies.

If the first argument is zero, this command does not immediately affect any currently
open session. However, this command sets default timeout values for any future
sessions created through subsequent callsto lateOpen.

The second argument to | ateControl isthe APISetTO command.

The third argument to lateControl specifies the timeout period, using atimeval structure.
In that structure, the tv_sec field can specify the number of seconds, and the tv_usec field
can specify an additional number of microseconds. Three different modes can be specified:

» |If tv_sec and/or tv_usec are not zero, subsequent callsto |ateRead will return after the
specified timeout, or after data arrives (whichever comes first).

* If both thetv_sec and tv_usec fields are zero, subsequent calls tol ateRead will return
immediately, regardless of whether or not any data has been received.

o If thethird argument isNULL, the API SetTO command disables the read timeout.

In thismode, callsto lateRead will not return until message data becomes available
from the host.

38

Caution:

A blocking interval of one second or less may cause some inaccuracy in the
amount of time that | ateRead waits for data. |1ateRead may return with no data
before the blocking interval has expired.

See Also:

APIResetL ock

Example:

#i ncl ude <tine. h>
struct tinmeval to;

/*
The foll owi ng exanple sets a blocking interval of 1 second.
(Note that lateRead might return with no data
before 1 second has el apsed.)

*/

to.tv_sec = 1,

to.tv_usec = O;

lateControl (refnum APISetTO, (unsigned char *) &to);

/*

The foll owi ng exanple sets a blocking interval of 100 m croseconds.

|lateRead will conplete when a nmessage is avail abl e
or after 100 mi croseconds have expired, whichever comes first.)
*/

to.tv_sec = 0;

to.tv_usec = 100;
lateControl (refnum APISetTO, (unsigned char *) &to);

39

APISetMsg

Purpose:

This command puts a TA object connection into “Message Mode’.

In Message Mode, | ateRead returns after receiving a complete data message of
one or more segments, up to and including a segment that ends with the EOMC
indicator (End of Message, Complete), or EOMU (End of Message, Unsolicited).

If the application does not issue this command, the TA object connection
will remain in “Segment Mode’ by default. In Segment Mode, | ateRead
returns as soon as a received data segment becomes available,

without waiting for completion of a multi-segment message.

It is generally advisable to use Segment Mode rather than Message Mode,
for reasons such as those explained below.

Caution:
It is not appropriate to use Message Mode (and Auto-Answer mode)
if the application must acknowledge the individual segments of an incoming message.

For example: If the application serves a printer TA object to generate tickets or
other critical output, the application may be required to acknowledge each segment
after it is printed, as aform of end-to-end assurance. (This requirement appliesto
SABRE “protected mode” printer connections.)

In such cases, the Message M ode should not be enabled, and the Gateway's
Auto-Answer mode should not be enabled. (See API SetAutoAns.)

Another possible reason to avoid Message Mode is that the accumulation of an
entire message may sometimes exceed the API's buffer capacity.

Arguments:

The first argument to lateControl specifiesthe TA object connection to which
this command applies. The second argument is the API SetM sg command.
The third argument isignored and should be zero.

40

See Also:

API SetSegment

Example:

lateControl (refnum APISetMsg, (unsigned char *) 0);

41

APISetSegment

Purpose:

This command putsa TA object connection into “ Segment Mode”.
In Segment Mode, | ateRead returns as soon as a received data segment
becomes available, without waiting for completion of a multi-segment message.

Thisisthe default mode; APl SetM sg sel ects the alternative mode.
It is generally advisable to leave the connection in Segment Mode.
(For more information, see API SetM sg and API SetAutoAns.)

Arguments:

Thefirst argument to lateControl specifiesthe TA object connection to which
this command applies. The second argument is the API SetSegment command.
The third argument is ignored and should be zero.

See Also:

AP| SetM sg

Example:

| ateControl (refnum APISetSegment, (unsigned char *) 0);

42

APISetAutoAns

Purpose:

This command turns on the Gateway's “ Auto-Answer” mode, for automated
acknowledgments. Thisinstructs the Gateway to send segment acknowledgments
to the host automatically, immediately after the gateway receives each segment.

The Auto-Answer mode is required when operating in Message Mode
(after an API SetM sg call). However, Message Mode and Auto-Answer
are generally not advised, for reasons such as those explained below.

Caution:
It is not appropriate to use Message Mode and Auto-Answer mode
if the application must acknowledge the individual segments of an incoming message.

For example: If the application serves a printer TA object to generate tickets or
other critical output, the application may be required to acknowledge each segment
after it is printed, as aform of end-to-end assurance. (This requirement appliesto
SABRE “protected mode” printer connections.)

In such cases, the Message M ode should not be enabled, and the Gateway's
Auto-Answer mode should not be enabled.

The API SetAutoAns command affects only the specified TA object connection
on which the application issues the command.

The Gateway also hasan AUTO_ANSWER configuration item. Specifiedin a

Gateway configuration file, AUTO_ANSWER determines whether the auto-answer mode
isturned on or off by default, for al of the connections defined in that configuration file.
“AUTO_ANSWER 1" enables Auto-Answer. “AUTO_ANSWER 0" disablesit, and

that isthe default setting. (Refer to | ATE Gateway documentation for more information.)

If the application does not issue APISetAutoAns, and if the AUTO_ANSWER

option is not specified in Gateway configuration (or if it isset to 0),
the Auto-Answer mode will be disabled.

43

Arguments:

The first argument to lateControl specifiesthe TA object connection to which
this command applies. The second argument is the API SetAutoAns command.
The third argument points to a character which should contain a nonzero value
to turn the option on.

See Also:

APISetNoANs

Example:

unsi gned char x = 1;
| ateControl (refnum API Set Aut oAns, &x);

44

APISetNoAnNns

Purpose:

This command turns off the Gateway's “ Auto-Answer” mode. This prevents
the Gateway from sending segment acknowledgments to the host automatically.

If the Auto-Answer mode is turned off, the application must use | ateControl with the
API SendAck command to acknowledge each received segment. The Gateway
sends a segment acknowledgment to the host after the application uses APl SendAck.

This command is appropriate for any TA object requiring end-to-end
segment-delivery assurance, such as aticket printer TA.

This command affects only the specified TA object connection. The Gateway
also hasan AUTO_ANSWER configuration item. That option, specified in a
Gateway configuration file, determines whether the auto-answer mode is turned

on or off by default, for all the connections defined in that configuration file.
(Seethe IATE Gateway documentation for information on Gateway configuration.)

Arguments:

The first argument to lateControl specifiesthe TA object connection to which
this command applies. The second argument is the API SetNoAns command.
The third argument isignored and should be zero.

See Also:

APl SetAutoAns

Example:

| ateControl (refnum APl Set NoAns, (unsigned char *) 0);

45

APIGetTaProt

Purpose:

This command finds out whether or not the specified object is associated with a
SABRE protected printer TA. This function applies to SABRE connections only.

Arguments:

Thefirst argument to lateControl specifiesthe TA object connection to which
this command applies. The second argument isthe APIGetTaProt command.
The third argument is ignored and should be zero.

Example:
ret = lateControl (refnum APIGetTaProt, (unsigned char *) 0);
if (ret >= 0)
printf(
"TA % in protected node",
ret ? "is" : "is not");

46

AP|GetTaCCC

Purpose:

This command finds out whether or not the segment checksum (CCC) validation succeeded
on the most recent message or segment received from the host.

The CCC validation status also available in the control-buffer returned with each message or

segment from lateRead. If the application checks that status from lateRead, it may not be
necessary to use APIGetTaCCC. Refer to the discussion of 1ateRead for details.

Arguments:

Thefirst argument to lateControl specifiesthe TA object connection to which this
command applies. The second argument isthe APIGetTaCCC command.
The third argument is ignored and should be zero.

Returns:

lateControl returns avalue of zero or greater to indicate that the checksum
validation succeeded, or a negative value to indicate that the validation failed.

If the validation succeeded, the segment contains valid data.
If the validation failed, the segment is corrupt, and the application should not useit.

Example:

ret = lateControl (refnum APIGetTaCCC, (unsigned char *) 0);
if (ret >=0)
printf ("CCC was % on |ast nessage ", ret ? "GOOD' : "BAD');

47

APIGetHostStat

Purpose:

This command retrieves host connection status information. The meaning of the returned status
information depends on the type of host connection, as noted below.

Arguments:

The first argument to | ateControl specifiesthe TA object connection to which this
command applies. The second argument isthe API GetHostStat command. The third
argument specifies a buffer in which this call returns a host connection status value.

Returns:

For AL C connections,
the returned status information is as follows:

The status value indicates the current state of the IA polling state and the
host line's modem control signals. (The required modem control signalsinclude
DCD, DCR, and/or CTS, depending on Gateway configuration.)

If the host connection's required modem signals are up and the IA is being polled.
the lateControl return valueis 1, and the status value returned in the buffer
is 701 hexadecimal.

If the host connection's required modem signals are not al up, or the IA is not currently
being polled, the lateControl return value is 0, and the status value returned in the buffer
has a value other than 0x701.

The host status bit mask values, which provide detailed status information,
are described infile“U_API.h” (see Appendix J).

48

For TCP or X.25 host connections,

the status value returned in the buffer has the following meanings:

0 (zero):

The host connection is not available.
(The application should not send data while the connection is unavailable.)

701 hexadecimal:

The host connection is available and operational
(insofar as the Gateway is able to verify).

The application is permitted to send data messages.

If the returned status buffer contains any other value:
The host connection may be, or may not be available and operational.

The application is permitted to send data messages, even though the

host connection may not be operational. If the Gateway’ s connection to the
host has been lost, messages cannot immediately reach the host, but the
Gateway will attempt to re-establish the connection and then send the messages.

To verify message delivery, the application should check for any expected
responses from the host. If the application receives no response from the host
(within areasonable time period after sending a message), this may indicate
that the host is currently not available for communications.

If an error occurs in the course of obtaining the host connection status information,
lateControl returns a negative error code. Refer to Appendix A for information
about IATE API error values and their causes.

Example:

| ong st at us;

ret

= lateControl (refnum APIGetHostStat, (unsigned char *) &status);

if (ret >=0)

printf ("APIGetHostStat returned %, status code %94X', ret, status);

49

APIGetTaStat

Purpose:

This command finds out whether or not the API has received any host messages
or segments which the application can retrieve immediately using | ateRead.

In general it is more efficient to ssimply use | ateRead and process any data received,
without using API GetTaStat.

The behavior of this command depends in part on whether the channel isin
Segment Mode or Message Mode. (See API SetSegment and API SetM sg.)

Arguments:

Thefirst argument to lateControl specifiesthe TA object connection to which this
command applies. . The second argument isthe APIGetTaStat command. The third
argument is ignored and should be zero.

Returns:

lateControl returns avalue of zero or greater to indicate the number of segments
that the APl has received, which the application can retrieve immediately using | ateRead.

Evenif lateControl returns a positive value to indicate an avail able message,
a subsequent call to lateRead may return zero, indicating no data received.
This behavior is caused by message queuing logic in the API.

In genera it ismore efficient to smply use | ateRead

and process any data received, without using APl GetT aStat.

If an error occurs, | ateContr ol returns a negative error code.
Refer to Appendix A for information about IATE API error values and their causes.

See Also:

API SetSegment
APISetM sg

50

Example:

ret = lateControl (refnum APIGetTaStat, (unsigned char *) 0);
if (ret >=0)
printf ("There are %l nessages waiting to be read", ret);

51

APIGetTaThrottle

Purpose:

This command finds out whether or not sufficient time has el apsed between lateWrite calls,
so that the application may issue the next lateWrite call on the specified connection.

After an application calls lateWrite on a given object connection, the API will not
accept another 1atéWrite on the same object, until the API Throttle Interval
time period has el apsed.

The Gateway configuration item API_THROTTLE_INTERVAL setsthethrottle
interval time. Its default value is one second.

Arguments:

The first argument to lateControl specifiesthe TA object connection to which this
command applies.

Returns:

lateControl returns avalue greater than zero if the throttle interval has el apsed,
and the application can call 1ateWrite on the specified object. lateControl returns
zero if the throttle interval has not yet elapsed since the application's last call to
lateWrite on this object.

If an error occurs, | ateContr ol returns a negative error code.
Refer to Appendix A for information about IATE API error values and their causes.

Example:
ret = lateControl (refnum APIGetTaThrottle, (unsigned char *) 0);
if (ret >=0)
printf(
“lateWite % be issued on connection % at this time",
ret ? "may" : "may not",
ref nunj ;

52

APIGetObjectConfig

Purpose:

This command retrieves Gateway configuration information for the specified TA object.
Thisinformation is available only after the application has successfully connected to the
object by using lateOpen.

Arguments:

The first argument to | ateControl specifiesthe TA object connection to which this
command applies. The second argument is the API GetObjectConfig command.

The third argument is a buffer in which this command returns the configuration information
(struct u_link_response).

Example:

#i ncl ude "U_APItypes. h"

struct u_link response config;
lateControl (refnum API Get ObjectConfig, (unsigned char *) &config);

Following isalisting of struct u_link_response:

struct u_link response

{

char
iata_str[10]; /* 1A and TA (ALC val ues) */

unsi gned short
pr ot ocol , /* host type, defined in U CVNhos.h */
throttle limt, /* time between lateWites,

set in gateway configuration file */

port; /* port nunmber (for ALC), defaults to 0 */
boar d; /* board nunber (for ALC), defaults to 0 */

char
server_ver[10]; /* server version */

unsi gned char

53

asc_eomnpb, /* EOM characters defined in serverde.h */
asc_eont,
asc_eonu,
asc_eom ;

unsi gned char

alc_ia, [* 1A */
alc_ta; /* TA */
short
obj ect _type; /* object type:
1: TERM NAL
2: PRI NTER
3: TERM NAL_API
4: PRI NTER_API */
short
gate_type; /* gateway type:
1: Wndows or UNI X gat eway
2: Mac gateway */
char

obj ect _nane[MAX_CLI ENT_NANME+2] ;
/* name of object */

unsi gned char
answer _back_rul es,

expect _aid, /* AID character for CPARS */
defaul t _ai d, /* starting inbound AID for CPARS */
fill[1];

54

APISendAck

Purpose:

This command instructs the Gateway to send a message/segment acknowledgment
to the hogt, if necessary.

Arguments:

The first argument to lateControl specifiesthe TA object connection to which this
command applies. The second argument is the API SendAck command.

The third argument is a character value which specifies the acknowledgment type,
which may be either NORMAL_ANS or UNABLE_TO_ACCEPT.

The IATE header file iate pub.h defines NORMAL_ANS and UNABLE TO_ ACCEPT,
among severa other acknowledgment values. The application should only use one of
these two values with this command.

#defi ne NORVAL_ANS "0 /* positive acknow edgnent */
#defi ne UNABLE TO ACCEPT '4' /* negative acknow edgment */

An application handling traffic for a printer or ticket-imaging object uses API SendAck
to acknowledge each segment.

Example:

Following is sample code for receiving and acknowledging messages whilein
Segment Mode. This sample program links to a printer object, receives printer data,
acknowledges it, and writes it to afile.

55

#i ncl ude <fcntl. h>
#i ncl ude <wi nsock. h>
#i ncl ude <stdi o. h>

#i ncl ude "U_API . h"
#i nclude "U APl typ. h"
#i ncl ude "U_API pros. pro”

/* The follow ng functions, defined in this exanple,

* will also be used by other sanple prograns in this document.
*/

void Setup (void);

voi d Connect (void);

voi d Di sconnect (void);

int wuserBreak (void);

/* Paranmeter val ues for API SendAck
*/

#def i ne NORMAL_ _ANS ‘0
#def i ne UNABLE _TO ACCEPT ' 4'

/* Paranmeter values for APIPrinterStat
*/

#define PAVAIL "1"

#defi ne PUNAVAIL "0"

/* Connection specifier for lateQpen, to
* connect to a printer object naned "printer02"
* on gateway host system "gw2"
*/
unsi gned char
connection_specifier[] = "@w2\\ial cserver\\printer02"

/* | ATE session reference nunber
*/
| ong refnum

/* Buffers for messages received via |ateRead
*/
unsi gned char
buf f [MAX_BUFF_SZ], /* message buffer */
ctrl [CTRL_BLK S7]; /* control block: Cl, C2, EOW, CCC_OK, MORE */
/* (See the |ateRead docunentation) */

mai n()
{
long ret,
nchars;
i nt fd;

56

unsi gned char ack

fd = open("printer.log", OWRONLY | O CREAT);

if (fd <0)

{
printf("Can't open printer.log file for witing");
exit(1);

}

/*

* The Setup() function sets the APl diagnostic |evel of Ox2ff,

* and sets the minimumtinme required between successive

* lateOpen calls to 10 seconds.

*

* The Connect () function calls lateStart,

* sets the lateRead bl ocking interval to 10 seconds,

* requests a connection to the printer object,

* and tells the Gateway that the printer is avail able.

*/

Set up();

Connect () ;

57

/*
* Read nessages fromthe host, acknow edge t hem
* and wite themto a file.
*/

whil e (!userBreak())
{
/*
* Read a nessage fromthe host.
*/

nchars = | ateRead(ref num MAX BUFF_SZ, buff, ctrl);

| at eRead returns the nunber of characters in the
host nessage, plus 2 control characters.
Refer to the | ateRead docunent ati on.

/

b T

if (nchars < 0)

ack = UNABLE_TO_ACCEPT;
el se
{

/
A valid nessage segnent checksum i ndi cat or
is equal to '1" (0x31). |If the checksumi ndicator
value is '0" (0x30), it indicates an invalid segment.

* Xk %k F

/

if (ctrl[CTRL_COC OK] == 0x31)
{

ret = wite(fd, buff, nchars-2);

ack =
(ret == (nchars-2))
? NORMAL_ANS
UNABLE_TO_ACCEPT;

The printer needs to acknow edge each received segnent,
by sendi ng an API SendAck, whether the segnment is

valid or not.
/

* ok X X ok

| ateControl (ref num API SendAck, &ack);

i f (ack == NORMAL_ANS)
printf ("Host nessage witten to log file.\n");

58

/*
* Disconnect fromthe Gateway and API

*/
Di sconnect () ;
}
/*
* The Setup() function sets the APl diagnostic |evel of Ox2ff,
* and sets the minimumtinme required between successive
* lateOpen calls to 10 seconds.
*/
voi d
Setup ()
{
long x;
short val;
/*
* Set the APl Debuggi ng verbosity |evel.
* (Refer to Appendix G)
*/
X = 0Ox2ff;
| at eControl (
(long) O,
API Set Api Debug,
(unsigned char *) &x);
/*
* Set the APl Open Delay tine.
*/
val = 10; /* seconds */
| at eControl (
(long) O,
API Set OpenDel ay,
(unsigned char *) &val);
}

59

The Connect() function calls lateStart,

sets the lateRead blocking interval to 10 seconds,
requests a connection to the printer object,

and tells the Gateway that the printer is avail able.
/

b T R

voi d
Connect ()
{

struct tinmeval to;

/*

* Initialize the API.

*/

startcode = lateStart(1, 0, (unsigned char *) "");

if (startcode < 0)

{
printf(
"lateStart failed (error %d)\n",
start code);

exit(2);

/*
* (pen a connection to the printer object.
*/

ref num =
| at eQpen(
startcode,
API Li nkToNarre,
connection_specifier);

if (refnum< 0)

{
printf("\nlateQpen failed (error %)\n", refnum;
| at eSt op(startcode);
exit(3);

}

60

/*
* Set the |lateRead bl ocking interval to 10 seconds.
*/

O.

to.tv_usec :
10;

to.tv_sec =

| at eControl (
ref num
API Set TO,
(unsigned char *) &to);

/*
* Tell the Gateway that the printer is avail able.
*/

| at eControl (
ref num
API PrinterStat,
(unsigned char *) PAVAIL);

/*
* The Di sconnect() function disconnects the
* application fromthe Gateway and API.

*/
voi d
Di sconnect (void)
{
/*
* Set printer status to 'unavail able’
*/
| at eControl (
ref num
APl PrinterStat,
(unsigned char *) PUNAVAIL);
/*
* Close the printer object connection
*/
| at ed ose(ref num;
/*
* Terminate this application's use of the API
*/
lateStop();
}

61

The userBreak() function should return a nonzero val ue
if the user has requested termi nation of the program
After this function returns nonzero,
the caller should term nate the program gracefully.
/

b T R

i nt
user Break(voi d)
{

/
The body of this function is not shown here.
The neans of detecting user input depends on the
platform (Wndows or UNI X), the type of application
and choice of inplenmentation.

For exanple, in a console program this function could
work with a signal handler to detect a Ctrl-C keystroke.
After the user presses rl-Cto termnate the program
this function would return nonzero, and the caller
woul d proceed to term nate the program

L I N S I B T R

* ... Insert code here, to return nonzero
* if the user has requested programterm nation ..
*/

return O;

62

APIPrinterStat

Purpose:

The APIPrinter Stat command sends printer status information to the Gateway.

Any application that opens a printer TA object, and processes print data from
the host, should use this command. A “printer TA object” is one specified
with type PRINTER or PRINTER_API in the IATE Gateway's configuration,

corresponding to a printer TA as defined in the airline host system.

The application informs the Gateway as to whether or not the destination
output device is ready to process data messages from the host.
The destination device may be a printer, or some other device being used
in place of aprinter -- wherever the application sends the 'printed' data.

If the output destination device is known to be always available --
or if the application has no way to obtain its current status --

the application may choose to issue API Printer Stat with PAVAIL
just once, to declare the object permanently available.

Arguments:

The first argument to lateControl is the reference number of the
TA object connection on which to set the printer status.

The second argument to lateControl isthe APIPrinter Stat command.
The third argument to lateContr ol specifies the status value:
nonzero to indicate that the printer destination is available

for messages, or zero to indicate that it is not available.
See the example below.

63

Example:

/* Status values for APIPrinterStat:

*/
#def i ne PAVAI L "l /* printer available */
#defi ne PUNAVAIL "0" /* printer unavail able */
/* Tell the Gateway that the printer is available or not:
*/
if (printerAvail()) /* <-- a function defined by the application */
{
lateControl (refnum APIPrinterStat, (unsigned char *) PAVAIL);
}
el se
{ | |
lateControl (refnum APIPrinterStat, (unsigned char *) PUNAVAIL);
}

64

APInoTaTimeout

Purpose:

The APInoTaTimeout command disables the Gateway's “ TA timeout” for the specified object.
This command works only if the Gateway has not been configured to expect “heartbeat”
keep-alive messages from the application. (By default the Gateway does not expect heartbeats.)

The Gateway's TA_TIMEOUT configuration item specifiesthe TA Timeout in minutes. This
timeout can be specified in the Gateway configuration file.

If the TA Timeout elapses with no messages sent from the application, the Gateway may
disconnect the application. If the application issues the APInoTaTimeout command, this can
prevent such disconnection.

The purpose of the Heartbeat option is to detect a“crashed” application's failure to disconnect
from the Gateway. Contrast thisto the TA Timeout, the purpose of which isto protect against
idle applications keeping TAs occupied. See API SetHeartbeat for more information about
heartbeats.

When expecting heartbeats, the Gateway does not use the TA Timeout, because the 60-second
heartbeat timeout overridesit.

Arguments:

The first argument to lateControl isthe reference number of the TA object connection on which
to disable the TA Timeout.

Example:

| ateControl (refnum APInoTaTi meout, 0);

See Also:

API SetHeartbeat
Gateway configuration items:

TA_TIMEOUT
HEARTBEAT_REQUIRED

65

66

APIGetVersion

Purpose:

The API GetVersion command retrieves atext string containing the the APl version number.

Arguments:

The first argument to lateControl should be zero for this command, because this command
does not operate on a specific TA object.

The second argument to lateControl isthe APIGetVersion command.

The third argument to lateControl specifies a buffer to receive the version string.
The buffer should be at |east 9 bytesin length.

Returns:

Current versions of the API return aversion string intheform " 2. XX. YY",
where XX and YY are numeric values which will depend on the version installed.

Theinitial value 2 indicates that the running API is a member of the
second generation of IATE API releases. The XX value indicates the
major incremental release level, and the YY value indicates the
minor incremental release level.

Example:

char buff[9];
| ateControl (0, APIGetVersion, buff);
printf ("APl version %\n", buff);

67

APISetHeartbeat

Purpose:

The APl SetHeartbeat command tells the APl whether or not to allow the application to trigger
“heartbeat” (keep-alive) messages to the IATE Gateway.

If the API uses this command to enable heartbeats, then the client application must use the
API Startlmin command to send heartbeats to the Gateway.

If the Gateway's HEARTBEAT_REQUIRED configuration option is turned on, the Gateway
expects the client application to send periodic heartbeat messages. If the Gateway's
HEARTBEAT_REQUIRED option is turned off, the Gateway will not expect heartbeat
messages from the client , unless the client begins to send them.

When the Gateway expects heartbeats, the client application should send heartbeats and/or

data messages at periodic intervals no longer than 50 seconds (Ieaving a 10-second margin
under the 60-second time limit). If 60 seconds elapse with no message received from the client,
the Gateway disconnects the client.

The purpose of Heartbeats is to protect against idle applications keeping TAs occupied. Contrast
thisto the TA Timeout, the purpose of which isto detect a* crashed” application's failure to
disconnect from the Gateway. See APISetT O for information about the TA Timeout.

When expecting heartbeats, the Gateway does not use the TA Timeout configuration item,
because the 60-second heartbeat timeout overridesiit.

Arguments:

The first argument to lateControl is the reference number of the
TA object connection on which to set the Heartbeats option.

The second argument is the API SetHear tbeat command.

The third argument is nonzero to enable heartbeats,

or zero to disable them.

See Also:

APIStartlmin

Gateway configuration item:

68

HEARTBEAT_REQUIRED

Examples:
To enable heartbeats:
short val = 1; /* 1 = enable */

lateControl (refnum API SetHeartbeat, (unsigned char *) &val);

lateControl (refnum APIStartlmin, O0);
/* (periodically at intervals | ess than 60 seconds) */

To disable heartbesats:

short val = 0; /* 0 = disable */
lateControl (refnum API SetHeartbeat, (unsigned char *) &val);

69

APIStartlmin

Purpose:

The API Start1min command sends a heartbeat message to the Gateway.

If the application will use API Start1min, the application
must first use APl SetHeartbeat to enable heartbeat transmission.

See also:

API SetHeartbeat

Example:

| ateControl (refnum APIStartlmin, (unsigned char *)"");

70

APIResetLock

Purpose:

This command resets the API's write lock.

When an application calls lateWrite, the API ‘locks’ the session against further
writes. The application cannot issue another ateWrite on the session until:

(1) acal to lateRead returns a response message from the host, or

(2) the application issues API ResetL ock.

It takes time for the host to respond to amessage. Therefore, itis
recommended that the application wait for atime somewhat longer than the
host's typical response time. After waiting a reasonable amount of time

but obtaining no response, the application can reset the write lock if necessary.

Note for Windows platforms only:

APIResetL ock flushes messages queued from the Gateway

to the host, for the object session specified by the first argument.
Alternatively, APIResetL ocal can be used to reset the write lock
without flushing queues.

Note for UNIX platforms only:
APIResetL ock does not flush the Gateway-to-host message queues.
However, APl Forwar dReset can be used to flush the message queues.

Arguments:

The first argument to lateControl is the reference number of the

TA object connection on which to reset the write lock and flush message queues.
The second argument is the API ResetL ock command.

The third argument is ignored and should be zero.

See also:

APIResetL ocal
API Forwar dReset
APISatTO

71

Examples:

| ong refnum
| ateControl (refnum APIResetlLocal, (unsigned char *) 0);

The following example demonstrates a typical use of APIResetLock
in asimplified messaging application.

#i ncl ude <stdio. h>
#i ncl ude "U API . h"
#i nclude "U APl types. h"
#i ncl ude "U_API pros. pro"

/* The follow ng routines are defined in the API SendAck exanpl e.
* These routines may need to be nodified to suit this exanple.
*/

voi d Setup(void);

voi d Connect (voi d);

voi d Di sconnect (voi d);

i nt userBreak(void);

/* Connection specifier for lateQpen, to
* connect to a terminal TA object nanmed "ternml6"
* on gateway host system "gw2"
*/
unsi gned char
connection_specifier[] = "@w2\\ial cserver\\terml6";

/* | ATE session reference nunber
*/
[ong ref num

/* Buffers for messages received via |ateRead

*/

unsi gned char
buf f [MAX_BUFF_SZ], /* message buffer */
ctrl[CTRL_BLK SZ]; /* control block:Cl, C2, EOW, CCC_OK, MORE */

/* (See the |ateRead docunentation) */

mai n()

{
struct tineval to
| ong nchars;
i nt ret;

72

unsi gned char ack

/*
* The Setup() function sets the APl diagnostic |evel of Ox2ff,
* and sets the minimumtinme required between successive
* lateOpen calls to 10 seconds.
*
* The Connect () function calls lateStart,
* sets the lateRead bl ocking interval to 10 seconds,
* requests a link to the printer object,
* and tells the Gateway that the printer is avail able.
*/
Setup();
Connect () ;
/*

* Set the lateRead bl ocking interval to 2 seconds (as an exanpl e).
*/

to.tv_usec = 0;
to.tv_sec = 2;
lateControl (refnum (long) APISetTO (unsigned char *) &o);

/*
* Send nmessages to the host,
* and read any responses fromthe host.
*/

whil e (!'userBreak())
/*
* Send the host an enpty nessage.

* (This is only a sinplified denonstration
* A useful application would send a non-enpty message.)

*/
ret = lateWite (refnum O, (unsigned char *) "");
if (ret <0
br eak;
/*
* Wait for a response nessage, up to the amount of tine
* we specified through API Set TO above.
*
* |f no response arrives within that anmount of tine,
* then we nust reset the APl wite-lock, in order to
* al |l ow subsequent calls to lateWite.
*

/
nchars = lateRead (refnum MAX BUFF_SZ, buff, ctrl);
if (nchars == 0)

{

73

printf(

"No response received. Resetting the wite lock ..

| ateControl (refnum APIResetlLock, (unsigned char*) 0);

/*
* Di sconnect fromthe Gateway and API.
*/

Di sconnect () ;

74

An");

APIResetLocal

Purpose:

APIResetL ocal issimilar to APIResetL ock, but does not flush the
Gateway-to-host message queues. For details, please refer to
APIResetL ock (above).

Arguments:

The first argument to lateControl is the reference number of the
TA object connection on which to reset the write lock.

The second argument is the API ResetL ock command.

The third argument is ignored and should be zero.

Example:

| ong refnum
| ateControl (refnum APIResetLocal, (unsigned char *)

75

0);

APIForwardReset

Purpose:

On Windows platforms, this command is equivalent to APl ResetL ock:
it resets the APl write lock, and flushes Gateway-to-host message queues.

On UNIX platforms, where API ResetL ock does not flush the message queues,
this command can be used to do so.

This call isimplemented in Windows and Sun PCI gateways version 2.5 or later,
Windows API version 2.4.11 or later, and Sun PCI APl version 2.4.9 or later.

Note:

It is recommended that applications periodically check the host connection status
by using APIGetHostStat. The application should stop sending messages

if the host connection has been lost. (It is not sufficient to reset the lock

and send additional messages without checking the host status.)

On Sun Sbus (not PCI) systems, API Forwar dReset isignored.

Arguments:

The first argument to lateControl is the reference number of the

TA object connection on which to reset the write lock and flush message queues.
The second argument is the API Forwar dReset command.

The third argument isignored and should be zero.

Example:

| ong refnum
| ateControl (refnum APIForwardReset, (unsigned char*) 0);

76

APIWhoAmI

Purpose:

The APIWhoAml command retrieves the IATE Gateway's information about the
type of the connected airline-host.

The information retrieved consists of a host type-code (a number)
and a host type-name (a string).

The host codes are defined in the header file U_CMNhos.h,
Host type names are defined in cmdnames.c.

Note:

Only the Macintosh Gateway supports the Uniscope, Codacom, and AC100
host types. The Windows and UNIX gateways do not support those host types.

Arguments:

The first argument to lateControl is the reference number of the
TA object connection on which to obtain host type information.

The second argument to lateControl isthe APIWhoAml command.
The third argument to lateControl pointsto the string buffer in which
APIWhoAml will return the host type name. The string buffer should be

at least 16 byteslong. Some additional space is recommended, to
accomodate any future host names which may be slightly longer.

Returns:

APIWhoAml returns the host type code (as the lateControl function's
return value), and the host type name (in the string buffer given by the
third argument).

77

Example:

[ong ref num
char buff[32];
ret = lateControl (refnum APIW0AM , buff);

printf("Host type \"%\", #%", buff, ret);

78

Peer-to-Peer Messages

The following lateControl commands support peer-to-peer messaging:

APIQueryApplMsg
APIGetAppIMsg
APISendAppIMsg

Peer-to-peer messages may be sent between any two objects
linked to a single gateway.

A sample application, sendpeer .c, has been provided as an example of
peer-to-peer messaging. Two instances of sendpeer .c, connected to two
different TA objects respectively, communicate through peer-to-peer messages.

To use the peer-to-peer sample, set up 2 objects on a gateway;
called (for example) “Objectl” and “ Object2”.

Start two instances of the sample program, using each of the two objects
to talk to the other one:

sendpeer -c@ost Name\\ Servi ceNanme\\ Qbj ect 1 - p@ost Nane\ \ Ser vi ceNane\\ Obj ect 2
sendpeer -c@ost Nanme\\ Servi ceNanme\\ Obj ect 2 - p@ost Nane\\ Servi ceNane\\ Obj ect 1

The -¢c command-line option specifies the source object, which isto send
a peer-to-peer message to the second object, specified by the -p option.

By default, the program takes message text from the keyboard.
Enter aline of text at the keyboard and press Enter, and the program
will attempt to send that text in a peer-to-peer message to the remote object.

If you wish to send a message from afile (instead of sending from the
keyboard), specify the -f option with the file-name. For example:

sendpeer -c@ost\\ Service\\Ohjectl -p@ost\\Service\\hject2 -fFi |l eNanel
sendpeer -c@ost\\ Service\\Object2 -p@ost\\Service\\hjectl -fFileNane2

The API may break along message into segments while transmitting it to the

Gateway and the peer object. The receiving peer should send back acknowledgment
messages which indicate whether or not the peer processed each segment successfully.
The sending peer’ s API processes these acknowledgments and continues to send message
segments, until the entire message has been transmitted (or until an error occurs).

After transmitting the entire message to the peer (or after detecting an error),

the API passes the final acknowledgment code back to the sending application.
The acknowledgment code indicates success or failure.

79

Peer-to-peer messages begin with the struct u_applmsghdr message structure,
defined in the U_APItypes.h header file.

The application sends and receives peer messages in a buffer which begins
with that structure, followed by the message data. The structure contains
afield (datalen) that indicates the length of the message data, and a
command code (cmmd) which indicates the type of message.

These peer-to-peer command codes are defined in the U_API.h header file:

PTRdataMsgRsp A complete data message,
or the final part of a multi-part data message.

PTRcontMsgRsp Thefirst part, or a continuation,
of amulti-part data message.

PTRrspDone Positive acknowledgment of a data message received.
PTRrspOffline Negative acknowledgment: Printer is off-line.
PTRprinterFail Negative acknowledgment: Printer failed.
PTRnotAllowed Negative acknowledgment: Print not allowed on this TA.
PTRbusy Negative acknowledgment: Printer is busy.

PTRrspl Ofail Negative acknowledgment: 1/0 failed.

PTRforwardReset A “forward reset” control-message:
flushes message traffic in one direction.

Positive acknowledgment messages have a command code of PTRdataM sgRsp.
The various command codes for negative acknowledgments are also listed above.
Acknowledgment messages have a zero value in the length field (datalen).

See API SendApplMsg for an example of a peer acknowledgment message.

Each of the following calls uses the message header (struct applmsghdr)
defined in U_APItypes.h.

80

APIQueryApplMsg

Purpose:

This command checks to seeif there is any peer-to-peer traffic available
for the application to retrieve.

Arguments:

The first argument to lateControl is the reference number of the
TA object connection on which to check for peer-to-peer messages.
The second argument is the API Quer yApplM sg command.

The third argument isignored and should be zero.

Returns:

lateControl returns zero if there is no peer message ready.

If amessageisavailable, |ateControl returns a value greater than zero.
The application can retrieve the message via API GetAppIM sg.

If an error occurs, lateControl returns a negative error code.
Refer to Appendix A for information about IATE API error values and their causes.

Example:

ret = lateControl (refnum, APl QueryAppl Msg, (unsigned char *) 0);
if (ret >=0)
printf ("There % peer nessages waiting",
ret ? "ARE' : "ARE NOT");

81

APIGetApplMsg

Purpose:

The APIGetApplIM sg command retrieves a peer-to-peer message.

The application supplies the buffer (buff) to receive the message.

The peer-to-peer message header (struct u_applmsghdr) comesfirst

at the beginning of the buffer, with length equal to APPLMSGHDR_SZ.
The message data follows the header, starting at offset APPLMSGHDR_SZ.

Arguments:

The first argument to lateControl is the reference number of the
TA object connection on which to receive a peer-to-peer message.

The second argument to ateControl isthe API GetApplM sg command.

The third argument to lateControl isthe address of the buffer in which to receive
a peer-to-peer message. The application initializes the datalength field (datalen)
of the message header in the buffer, to MAX_BUFF_SZ (2015 characters).

Returns:

lateControl returns the total length of the peer-to-peer message received,
or zero if no message was received.

If a message was received, the returned length value includes the length
of the peer-to-peer message header (struct u_applmsghdr). The length of the
message data proper can be found in the header's length field (datalen).

A peer-to-peer message may arrive in multiple parts (or ‘ segments’).

If the received message datais only the first of multiple segments,

the command field (cmmd) contains PT RcontM sgRsp, and the continuation
field (more) contains a nonzero value. Subsequent peer-to-peer message(s)
contain the subsequent parts of the data, and the final message of the series
has command code PT RdataM sgRsp.

82

Example:

char buff[MAX BUFF_SZ];

struct appl nsghdr *pmhdr = (struct appl nsghdr *) buff;
prmhdr - >cnmd = O;

prmhdr - >dat al en = MAX_BUFF_SZ;

ret = lateControl (refnum API GetAppl Msg, buff);

83

APISendApplIMsg

Purpose:

The API SendApplM sg command sends a peer-to-peer message.

The application supplies the buffer (buff) that contains the message.

The peer-to-peer message header (struct u_applmsghdr) comesfirst

at the beginning of the buffer, with length equal to APPLMSGHDR_SZ.
The message data follows the header, starting at offset APPLMSGHDR_SZ.

The maximum length of a message that can be sent at one time is 2015
characters of data(MAX_BUFF_SZ), plus the peer-to-peer header (APPLMSGHDR_SZ).

Arguments:

The first argument to lateControl is the reference number of the
TA object connection on which to send a peer-to-peer message.

The second argument to lateControl isthe APl SendApplM sg command.

The third argument to lateControl is the address of the buffer from which to
send a peer-to-peer message. The application initializes the data length field
(datalen) of the message header in the buffer, to indicate the length of the
message, up to MAX_BUFF_SZ (2015 characters).

Examples:

The sample program seedpeer .c, supplied with the IATE API software
distribution, demonstrates sending and receiving of peer-to-peer messages.

The following examples use the ExtractFromNameString function,
which can be found in the seedpeer .c sample program.
ExtractFromNameString extracts the Gateway host name,

TCP/IP service name, and TA object name from a null-terminated
string buffer formatted as follows:

" @Host Narre\ \ Ser vi ceNane\ \ Gbj ect Nane"

In this example the application that sends a data message is using the

84

TA object “Objectl”. The application that receives the data message

isusing the TA object “Object2”.

The application receiving the message must acknowledge it, by sending a
peer-to-peer acknowledgment message. The API for the sending application
receives and process the acknowledgment, without involving the sending
application. (The sending application itself does not receive the

peer acknowledgment, so it does not implement any logic to process

peer acknowledgments.)

Thisis example code for the sending application:

struct appl nsghdr

*prhdr = (struct u_appl msghdr

/*

| ong nchars strlen (buff);

prmhdr - >cnmd = PTRdat aMsgRsp; /[*
prmhdr - >dat al en = nchars; /*
prmhdr - >nore = 0; /*
Extract FronNaneString (
pmhdr - >ToHost Nare, [*
prmhdr - >ToSer ver Nane, /*
prmhdr - >ToCbj ect Nane, /*

" @ost Nanel\\ Servi ceNanel\ \ Obj

Extract FronNaneString (

prmhdr - >Fr onHost Nane, /*
prhdr - >Fr onSer ver Nane, /*
prmhdr - >Fr onbj ect Nane, /*

*) buff;
this buffer contains the peer-to-peer
nessage header, followed by data */

conmand code for a data message */
| ength of nessage data (after header) */
indicate that this nessage is conplete */

host nane extracted from 4th argument */
server nane extracted from4th arg. */
obj ect nane extracted fromd4th arg. */

ect Namel");

host nane extracted from 4th argunment */
server nane extracted from4th arg. */

obj ect nane extracted fromd4th arg. */

" @Host Name\ \ Ser vi ceNane\ \ Qbj ect 2") ;

/*

| ateContro

ret

(refnum API SendAppl Msg,

send to Cbject2 (as an exanple only) */

buff);

Thisis example code for the application that receives and

acknowledges the data message:

char buf f[MAX BUFF_SZ] ;

struct appl nsghdr

*pmhdr = (struct appl msghdr *) buff;
/* a buffer to receive a nessage

and to send an acknow edgnent

/* Receive a peer-to-peer data nessage:

*/

*/

85

prmhdr - >cnmd = O;
prmhdr - >dat al en = MAX BUFF_SZ
ret = lateControl (refnum API Get Appl Msg, buff);

/* Send a peer-to-peer acknow edgment nessage: */

Extract FronNaneString (

prmhdr - >ToHost Nane, /* host name extracted from 4th argument */
prmhdr - >ToSer ver Nane, /* server nane extracted from 4th argunent */
prmhdr - >ToCbj ect Nane, /* object nane extracted from4th argunent */

" @Host Nane\\ Servi ceNane\\ Obj ect 1") ;
/* send to Objectl (as an exanple only) */

prmhdr - >cmrd = PTRr spDone; /* nsg has arrived and printed */
prmhdr - >dat al en = O; /* data length is 0 for acknow edgenents */
prmhdr - >nore = 0; /* this is a conmplete nmessage */

ret = lateControl (refnum APISendAppl Msg, buff);

The foregoing example uses the PT RrspDone code for positive acknowledgment.
Additional acknowledgment command codes are defined in the U_API .h
header file, as described in the Peer-to-Peer M essages section above.

86

APIForceSeperateSockets

Purpose:

This command forces the API to open a separate socket for each connection
to any TA object. Thiswill guarantee a unique socket file-descriptor
associated with each object connection and reference-number.

A Windows application that opens multiple TA connections in separate threads
must use this command before the first call to lateOpen. If the application
does not turn on this option, the IATE API for Windows cannot support
multiple connections serving multiple application threads.

A UNIX application opens multiple TA connections in separate processes

must use this command before the first call to lateOpen. If the application
does not turn on this option, the IATE API cannot support multiple connections
serving multiple UNIX application processes.

Arguments:

The first argument to lateControl should be zero for this command, because
this command does not operate on a specific TA object.

The second argument to lateControl isthe API For ceSepar ateSockets command.
The third argument to lateControl is nonzero to turn on the separate
sockets option, or zero to turn it off. (The option is off by default,

so an application should have no need to turn it off explicitly.
Simply leave it off if it's not needed, or turn it on as shown below.)

Example:

short x = 1; /* nonzero to turn on the separate sockets option:

| ateControl (0, APIForceSeperateSockets, (unsigned char *) &x);

87

*/

Appendix A: Error Codes

This appendix explains the error codes returned by IATE API functions.

Error -2002: ServerUnreachable / NoServerError

Returned By: lateOpen

Explanation:

This error indicates that the API cannot connect to the Gateway host system.

One possible cause is that the application may have specified
an invalid Service Name in the name argument to | ateOpen.
The application or its configuration should be modified to
issue lateOpen with a correct Service Name.

This error indicates that the requested connection has not been
established. The application should not call lateRead, lateWrite,
lateControl, or lateClose, on a session that has not been established.
If the application does so, the results are undefined, although

those functions might also return this error.

For example:
If the name argument to | ateOpen was:

@Host Narme\ \ Ser vi ceNane\ \ Ta(bj ect Nanme

then error -2002 means the ServiceName was invalid.
See Appendix | for more information about the Service Name.

See Also: Error -2204, HostUnreachable.

88

Error -2003: OutOfBufferError

Returned By: lateOpen
| ateRead
lateWrite
lateControl
|l ateClose

Explanation:

The API has run out of internal memory buffers. This should not happen
under normal conditions, but may occur because of inappropriate usage

of the API, or because of abnormal communication condtions between the
API and the Gateway.

To track down the cause of this error, begin by verifying that the
IATE Gateway appears to be functioning. The API Out-of-Buffers error
is sometimes a side-effect of afailure at the Gateway.

If the Gateway has reported an error or stopped operating,
the Gateway needsto be restarted; and if the trouble recurs,
the problem with the Gateway needs to be diagnosed.

If the Gateway appears to be functioning, but the API still reports
the Out-of-Buffers error, then investigate the application design.
Investigate the possibility that the application has overloaded the AP
with continuous commands, or with message data sent or received.
(For example, this could possibly happen in an application that sends
terminal messages on atermina TA and also receives printer traffic
from aprinter TA.)

89

Error -2004: ObjectUndefined / NamelsBad

Returned By: lateOpen

Explanation:

This error means that the 1ateOpen call failed because the requested
TA Object is not configured at the Gateway.

For lateOpen with the APILinkToName command (or the APILinkToDyCrt
or APILinkToDyPrt command), this error means that the specified Object Name
does not match any object name or group name in the Gateway's configuration.

For example, suppose the name argument to | ateOpen was.
@Host Name\ \ Ser vi ceNane\ \ Obj ect Nane

The IATE Gateway, running on the specified HostName, has a configuration file
associated with the specified ServiceName, but the specified ObjectName
(or group name) does not appear in that file's TA objects list.

Typically thisindicates a spelling error in the ObjectName that the application
requested. In order to connect to the object successfully, the application must
specify a correct object name (or the name of an object-group) in the call to lateOpen.

In addition to the spelling, the upper or lower case of each letter should also match
the Gateway's configuration.

Object names should not contain any blank spaces. Object names should begin
with aletter or digit, and should contain only letters and digits, and possibly
underscores. Other characters or punctuation generally should not be used.

Thiserror can also occur for the APILinkToTa command, which is used by
some legacy applications (not recommended for new ones). That command
specifiesthe IA number and TA number (rather than the name) of the object
to connect. If the Gateway has no object configured with that A and TA,
lateOpen will return this error code.

90

Error -2005: NamelnUse

Returned By: lateOpen

Explanation:

For lateOpen with the APILink ToName command, this error indicates
that the specified TA Object Name matches one of the Gateway's configured
object names, but that object is already in use by an application.

Similarly, for the APILinkToDyCrt or APILinkToDyPrt command,
this error indicates that any objects matching the request were already
in use by an application.

A new connection to an object cannot be established while that
application isusing it. Each TA object admits only one application
connection at atime. The object may become available again later,
when that application relinquishes the object by calling lateClose
(or when the Gateway disconnects from the application for time-out
or other reasons).

This error can also occur for Intercept-mode connections
(attempted with lateOpen and the API I nter ceptName command),
if an application is already intercepting the specified object.

Each TA object admits only one intercepting application at atime.

91

Error -2007: DataError

Returned By: lateOpen
lateWrite

Explanation:

This error indicates one of the following conditions.
Upon receiving this error, it is the responsibility of
the application programmer or tester to determine
which of these cases applies:

1. Bad name argument to | ateOpen:

The name argument that the application passed to | ateOpen
did not contain a TA Object specifier following the
Host Name and Service Name.

In this case, the application should be corrected to supply
avalid and complete name argument to | ateOpen,
in the required format:

@Host Name\ \ Ser vi ceNane\ \ Obj ect Nane

2. Bad message arqument to lateWrite:

a) The application passed the NULL valuein place of
the message buffer argument to lateWrite, or

b) The application passed a negative value
in place of the message-length argument to lateWrite.

In these cases, the application should be corrected to pass a
valid message buffer, and nonnegative length value, to lateWrite.

92

Error -2008: NotStartedError

Returned By: lateOpen
|l ateRead
lateWrite
lateClose
| ateStop

Explanation:

An application has made one the IATE API calls listed above,
without first calling the lateStart initialization function.

The application should call lateStart before calling
any of the other IATE API functions.

93

Error -2009: BadVersionError

Explanation:

The application isusing aversion of the IATE API

that is not compatible with the connected Gateway.

Check the version levels and verify correct IATE installation.
Reinstall IATE if necessary.

94

Error -2010: DirectionViolation

Returned By: lateWrite

Explanation:

The application program issued | ateWrite to send a new message,
but the API did not send this message, because the API is awaiting
the host response for the last message sent.

To avoid this error, the application should follow these rules:

1. After sending each message, normally the application will expect
aresponse from the host, and should receive it through | ateRead,
before sending another message.

The DirectionViolation error enforces a“lock” condition to
guard against sending another message before receiving a response,
because that is usually inappropriate.

2. The application may decide to send a new message
even though no response has been received for the last one.

(For example, the application might re-send a message after
some time period, if the expected response did not arrive.
Also, some interactive applications might alow their users
to break the lock and send a new message at any time.)

In such cases, the application can use the lateControl command
APIResetL ocal or APIForwardReset. Thiswill remove the
message-lock condition, allowing one subsequent lateWrite

to send the next message without the DirectionViolation error.

Every lateWrite call re-establishes the lock condition --

so that, once again, the API rejects any subsequent lateéWrite
call on this session (with the DirectionViolation error) --
until aresponse arrives, or until the application issues a

reset command to break the lock.

(Continued on next page)

95

See Also: Error -2103, APIOverrunErr

The direction-violation error and the API overrun error occur for different
reasons. They are not the same. The direction-violation error enforces
aternating transmission and reception of messages (the “direction rule”),
whereas the overrun error enforces a minimum time period between
transmissions (the “throttling rule”).

The application must therefore respect the direction rule

(to avoid the DirectionViolation error) as well asthe
throttling time (to avoid the APIOverrunErr error).

96

Error -2011: InterceptError

Returned By: lateControl:
APlintrWritel nput
APIlintrWriteOutput

Explanation:

The application issued | ateControl, with the APlintrWritel nput or
APIlintrWriteOutput command, to write dataon a TA object intercept channel.
The specified channel was invalid, or was not in intercept mode.

To avoid this error, the application must use the IATE API intercept
functions correctly. First, obtain a session through lateOpen with

the APlinter ceptName mode argument. Then use lateControl with the
APIlintrRoutel nput and/or APlintr RouteOutput command, specifying
the INTRDIVERT or INTRBOTH mode. For more information, see
Appendix F: Sharinga TA.

The application must complete those preparations in order to establish

Intercept Mode operation on a TA object, before using APlintrWritel nput
or APlintrWriteOutput.

97

Error -2101: APINoFreeChannel / TooManySessions

Returned By: |ateOpen

Explanation:

An lateOpen call failed because the application already has
reached the maximum number of open sessions that the API can
support per application.

At thiswriting, current versions of the API support 253 sessions
per application. If the application attempts to open more than
253 sessions, this error will result.

The application cannot open any more sessions until it closes
one or more of the sessionsthat it has already opened.

See Also: Error -2218, TooM anyConnections.

98

Error -2102: APIBadChannel / InvalidRefnum

Returned By: lateClose
lateControl
lateRead
lateWrite
lateOpen (see notes below)

Explanation:

This error indicates that the application specified an invalid
Session Reference Number in acall to an IATE API function.

When the application calls | ateOpen, the application must store the
reference number (ak.a. “refnum”) that 1ateOpen returns.
lateOpen establishesa TA connection “session” and returns the
reference number to uniquely identify that session.

The application uses that reference number in all subsequent

IATE API callsfor that session.

lateRead, lateWrite, lateClose, and most | ateControl calls require
the application to specify the reference-number of an existing session.
These calls will return this error if the specified reference-number
does not match any active session.

lateOpen returns this error only if the caller specified a

session reference number in the call. Applications usually do not

specify areference number in acall to lateOpen, since the most common
usage of lateOpen isto obtain anew session and a new reference number.
But the application may specify an existing reference number in order to
'reconnect’ to an active session. If the specified reference number

does not refer to any existing session, then the call returnsthis error.

99

Error -2103: APIOverrunkErr

Returned By: lateWrite

Explanation:

This error indicates that the application, after issuing an lateWrite call,
issued a second | ateéWrite call too soon, before the “API Throttle” time period
had elapsed.

IATE Gateway configuration defines the API throttling time period.
Thisisthe minimum time period between the application’'s successive
message transmissions through lateWrite, on each session.

After calling lateWrite, the application should not call lateWrite again
on the same session, until the throttling time period has el apsed.

For more information on throttle-interval configuration at the Gateway,
see the IATE Gateway documentation for the API_ THROTTLE_INTERVAL
configuration item.

At any time, if the application needs to find out whether or not |ateWrite

is disalowed due to throttling, one way to find out isto call lateControl
with the API GetTaT hrottle command. The return value tells whether or not
lateWriteis disallowed due to throttling. (See the discussion of
APIGetTaThrottle, elsewhere in the APl documentation.)

If the application wishes to override throttling on a session,
it may do so by calling lateContr ol with the APInoT hr ottle command.

Thiswill disable the throttling check, preventing the APIOverrunErr
error from occurring on the specified session.

(Continued on next page)

100

See Also: Error -2010, DirectionViolation.

The direction-violation error and the API overrun error occur for different
reasons. They are not the same. The direction-violation error enforces
aternating transmission and reception of messages (the “direction rule”),
whereas the overrun error enforces a minimum time period between
transmissions (the “throttling rule”).

The application must therefore respect the direction rule
(to avoid the DirectionViolation error) as well asthe
throttling time (to avoid the APIOverrunErr error).

See Also: Error -2214, APl OpenBlocked.

The Open-Blocked error and the APl Overrun error are similar in that

they both pertain to minimum intervals between certain API calls.

But these errors apply to two different API functions, and should not

be confused. The OpenBlocked error enforces a minimum interval between
lateOpen cals, whereas APIOverrunErr enforces aminimum interval between
lateWrite calls (on a particular open session).

101

Error -2201: InternalLogicError

Explanation:
This error indicates an unexpected problem within the API or gateway software.

Please contact InnoSys if any IATE API function returns this error,
or if thiserror appearsin an API debugging log file.

102

Error -2205: HostUnreachable

Returned By: lateOpen

Explanation:

This error indicates that the IATE API cannot contact the Gateway

host system, which the application specified in the name argument to the
lateOpen call. Specifically, this error indicates that the specified name

is not recognized by the local system's network host name resolution facilities.

To resolve this error:

» Verify that the application specified the gateway host system name
with correct spelling, in the name argument to lateOpen.

* Verify that the application host's network name resolution facilities
can recognize and resolve the specified gateway host name.
For example, use the ping utility, e.g. “pi ng host nane”,
to verify name resolution and to check network connectivity
to the specified host.

Depending on system configuration, network host name resolution may
involve DNS servers, WINS servers, NIS servers, and/or alocal

hosts-database file. If ncessary, consult your network administrator
for assistance in verifying correct resolution of the gateway host name.

See Also: Error -2002, ServerUnreachable (ak.a. NoServerError).

103

Error -2207: SessionNotConfigured

Returned By: lateOpen

Explanation:

During an lateOpen call, The IATE API requests session configuration
information from the Gateway. This error indicates that the API
did not receive the requested configuration data.

This error may indicate a version mismatch between the IATE APl and Gateway.
To resolve this error, verify that the connected IATE Gateway's software

version level is current and compatible with the version of the IATE AP

that the application isusing. Contact InnoSysiif the error persists.

This error may also indicate network congestion. The APl waitsfor a
limited time to receive an expected configuration response message:
If the wait time expires with no such response received,

the API will return this error.

104

Error -2208: NoSocket

Returned By: lateOpen

Explanation:

During an lateOpen call, the IATE API attempts to contact the Gateway.
As part of the connection procedure, the API requests the local system

to allocate a connection endpoint, termed a“socket”. If the system's
network facilities cannot allocate the socket, the API returns this error.

To resolve this error, verify that the system's TCP/IP networking facilities
are correctly installed and operational. Also verify that the system's
networking and memory resources are not overloaded.

Contact your network administrator for assistance if necessary.

105

Error -2209: CantConnectToServer

Returned By: lateOpen

Explanation:

During an lateOpen call, the IATE API attempts to contact the Gateway.
This error indicates that the API could not contact the Gateway,
for one of these possible reasons:

* TheAPI could not bind to a socket,
* TheAPI could not reach the Gateway host system,
* The Gateway was not operational on that system,

» The Gateway was not configured to listen on the TCP port
corresponding to the service name that the application
specified in the lateOpen call, or

* A network-related or system-related problem
prevented successful connection.

To resolve this error, verify the application host system's TCP/IP
connectivity to the Gateway host system, and verify that the Gateway
is operational on that system, and configured to listen on the TCP port
corresponding to the service name that the application specified in the
lateOpen call.

For example, if the application provided this name argument to | ateOpen:
@zat ewayHost \ Ser vi ceNane\ TaCbj ect Nane

then the IATE API attempts to connect to the gateway on the specified
GatewayHost, using the TCP/IP port number corresponding to the specified
ServiceName. On the Gateway host system, the Gateway must be running and
configured to listen on the same port number.

If those requirements are satisfied but the error persists, check for other

network-related or system-related problems that might prevent successful
connection.

106

Error -2210: UnexpectedMsgType

Returned By: lateControl
|ateRead
|ateWrite

Explanation:

This error indicates that the IATE Gateway returned a
message code that the IATE API cannot recognize.

This error may indicate a version mismatch between the IATE API and Gateway.
To resolve this error, verify that the connected IATE Gateway's software

version level is current and compatible with the version of the IATE AP

that the application isusing. Contact InnoSysiif the error persists.

107

Error -2211: WriteFailed

Returned By: lateOpen
|ateControl
|ateWrite

Explanation:

The WriteFailed error indicates that the APl was unable to transmit information to the Gateway.
The API’ s connection to the Gateway may have been lost. To recover from this error, the
application may need to close and reopen the session.

(The WriteFailed error only indicates a transmission problem between the API and a Gateway;
not between the Gateway and the airline host.)

If the lateOpen function returns the WriteFailed error, it indicates that the requested session
could not be opened, because the API could not transmit a request to the Gateway to open the
session. (The error can also be related to other internal messages involved in session startup,
depending on the IATE software version level.)

If the lateWrite function returns the WriteFailed error, it indicates that the API
could not transmit a data-message to the Gateway.

If the lateControl function returns the WriteFailed error, it indicates that the API
could not transmit a control-message, or a peer-data message, to the Gateway.
Detailsfollow:

lateControl supports a variety of commands, many of which internally involve transmission
of control-messages to the Gateway. (Theseinternal control-messages are not visible to the
application.) The WriteFailed error may occur with any such command, if the API could
not send the necessary control-message to the Gateway. This indicates that the | ateContr ol
command that the application requested could not be compl eted.

lateControl aso supports the APl SendApplM essage command, which transmits a
peer-to-peer data message from the requesting application to a separate application on
another system. The WriteFailed error indicates that the API could not send the data
message to the Gateway.

108

Error -2212: ReadFailed

Returned By: lateRead

Explanation:

The lateRead error indicates one of the following problems
preventing reception of data from the Gateway:
» A socket read/receive function call failed,
* Theread operation returned insufficient data from the Gateway,
» The connection to the Gateway terminated unexpectedly,
» The Gateway timed out the TA and closed the socket, or
» Gateway-to-API communications indicated a message length
that exceeds the maximum length the API will accept.

For thefirst case above, the application can check APlerrno (in API version 2 and later),
to obtain the error code returned by the failed system call.

Some of these error cases may be caused by network problems, resource problems
at the application or Gateway systems, or Gateway software failure. Check the
status of the Gateway system, network connectivity, and the application system.

The last case above (a message-length error) should not occur, but if it
does occur, it may indicate a version mismatch between the IATE API
and the Gateway. Verify that the connected IATE Gateway's software
version level is current and compatible with the version of the IATE AP
that the application is using.

109

Error -2214: OpenBlocked

Explanation:

This error indicates that the application, after issuing an lateOpen call,
issued a second | ateOpen call too soon, before the “ Open Delay” time period
had elapsed.

The “Open Delay” is the minimum time period between the application's
successive calsto lateOpen. The default Open Delay timeis 70 seconds.
After calling lateOpen, the application should not call lateOpen again
until this time period has elapsed.

If the application wishes to change the Open Delay time, it may do so by
calling lateControl with the APl setOpenDelay command, specifying the
desired Open Delay time, in seconds. The application can specify

any delay time of no less than 10 seconds. For more information,

refer to the section discussing the lateControl APIsetOpenDelay command.

See Also: Error -2103, APIOverrunErr.

The Open-Blocked error and the APl Overrun error are similar in that

they both pertain to minimum intervals between certain APl calls.

But these errors apply to two different API functions, and should not

be confused. The OpenBlocked error enforces aminimum interval between
lateOpen calls, whereas APIOverrunErr enforces a minimum interval between
lateWrite calls (on a particular open session).

110

Error -2215: SessionDisconnected

Returned By: lateRead
lateWrite
| ateContr ol

Explanation:

This error indicates that the Gateway has disconnected the session.

After the Gateway disconnects a session, the application's next call
to lateRead, lateWrite, or lateControl will return this error.
(Internally, the network socket connection between the Gateway
and the API closes shortly afterward.)

The session that has been disconnected is the same one on which the
application called the API function. The API cannot complete the
requested read, write, or control operation, because the session

isno longer available.

Note:

If a disconnection occurs while an lateRead call isin progress
(awaiting data), that call may return zero (indicating no data),
without returning the SessionDisconnected error.

If the application subsequently calls lateRead, lateWrite,

or lateControl, on the same session, that subsequent call

will return the SessionDisconnected error.

111

Error -2216: Notimplemented

Returned By: lateControl

Explanation:

The application issued an lateControl call containing a
command code that is either invalid or not implemented
by the running version of the API or Gateway.

The possible causes of this error are:

1. Version mismatch.
2. Incorrect IATE control code definitions.

To resolve this error, ensure the application is coded and tested to

work with the installed version of the IATE API, and that the connected
IATE Gateway is version-compatible with that release of API. Also ensure
that the application was compiled using the correct set of header files
supplied with that API release.

112

Error -2217: TooMuchDataQueued

Returned By: lateControl:
APIGetHostStat
APIGetTaStat

This error indicates that too much datais queued in the API.
The API cannot complete the requested API GetHost Stat or
APIGetTaStat control operation.

This can happen if the application issues too many APIGetTaStat or
APIGetHostStat commands, without intervening | ateReads, while the
API'sinternal buffersfill with dataincoming from the Gateway.

To resolve this error, the application must call 1ateRead in order to free
some of the received datathat the APl is holding initsinternal buffers.

A properly designed application avoids the TooM uchDataQueued error.

Background:
To check for received data on an open session, some applications

simply post a blocking lateRead call to wait for data.
This can work for a single-threaded application using a single session,
or for amultithreaded application using multiple sessions.

If the design requires that the application not block in lateRead,

or if asingle-threaded application uses multiple sessions, the

application may use APl GetTaStat or APIGetHostStat to poll for data.
When APIGetTaStat or API GetHostStat indicates that incoming data has
arrived on the session, the application should promptly call 1ateRead

to retrieve the data.

By retrieving the received data from the APl promptly, the application
prevents overflow of the API'sinternal buffers. This preventsthe
TooMuchDataQueued error.

(It isimportant to satisfy this requirement on all open sessions.

Even if the application retrieves data efficiently from a particul ar
session, API buffers can still overflow if the application failsto
retrieve data equally efficiently from other sessions. The well-designed
application maintains efficient dataflow on all of its open sessions.)

113

Error -2218: TooManyConnections

Explanation:

An API/Gateway connection attempt has failed because all the
available number of TCP/IP connections with the Gateway
have aready been used.

(This differsfrom APINoFreeChannel / TooM anySessions described below.
TooManyConnections reflects alimit on the number of socket connections
which can be opened, as opposed to the number of sessions with objects

that may be established.)

The operating system defines alimitation on the number of files an application
can have opened during a given process. This limit has been exceeded.

114

Error -2404: InvalidTask

Explanation:

Thiserror codeis obsolete. It was used in previous API releases for Windows 3.1x.

115

Appendix B: Background Information on the Gateway

This appendix describes the relationship between aterminal or printer object's
network address and its “object name” or “group name”.

Terminal and Printer Device Objects

Gateway configuration associates an individual terminal or printer address
with an “object name’. The address takes the form of an IA/TA or LNIA/TA
pair. (IA =Interchange Address, LNIA = Line/lA, TA = Terminal Address.)

The lateOpen API function call, given the APILinkToName option,
requests a connection to aterminal or printer object specified by
its unique "object name".

A collection of object names can be assigned a common "group name".
The lateOpen API function call, given the APILinkToName option,
can specify a*“group name” to select any one of a named group of objects.

The APILinkToT a option requests the link using the A and TA address of an
object, rather than the object name. The APILinkToT a parameters can also
include a port name, to specify a particular physical lineif necessary.

Note:

APILinkToTa s supported only on TAs defined on ALC host connections,
and on some, but not all X.25 connections. It is strongly recommended that
the application use APILinkToName.

If an application connects to objects by Group names (rather than the
individual object names), the application may need to discover the
individual name of an object after connecting to it. For that purpose,
use API GetObjectConfig, which returns information that includes
the name of the connected object.

The connection request may succeed if the object nameis available,
not already in use by another application. A connection request that
specifies a group name will succeed if there is any object available
in the specified group.

In addition to an object name, an IA TA, and a group name,

each device address configured at the Gateway has atype.
Thetypes are TERMINAL, PRINTER, TERMINAL_API and PRINTER_API.

116

Dynamic Objects

Objects configured at the Gateway with type TERMINAL_API or PRINTER_API
are called “dynamic objects’.

* Toconnecttoa TERMINAL_API dynamic object, the application
uses | ateOpen with the APILinkToDyCrt option.

* Toconnect to a PRINTER_API dynamic object, the application
uses | ateOpen with the APILinkToDyPrt option.

The application does not specify the name or address of a particular
dynamic object. Instead, the Gateway selects an available object
of the specified type.

The APILinkToDyCrt or APILinkToDyPrt parameters can also include a
port name, to specify a particular physical line if necessary.

117

Appendix C: Description of Host Traffic

This appendix contains a brief description of the format of ALC host messages.
Most of thisinformation applies specifically to ALC, not X.25 or TCP connections.
However, the information about the message control characters (“C1” and “C2")
applies generaly to al types of airline hosts.

The lATE API uses ASCII character codes. IATE user application programs
use ASCII character codes in message communications through the API.

The IATE Gateway uses ALC character code set in communications with
airline hosts that require it. The Gateway uses ASCII character codesin
communications with the API. Therefore, when delivering messages from
the API to the host, the Gateway trandates them from ASCII to ALC;

and, when delivering messages from the host to the API, the Gateway
trand ates them from ALC to ASCII.

Application <----- > APl <----- > Gateway <----- > Airline Host
ASCI | ASCI | ALC
(depending on host type)

A message from the airline host may consist of one or more message-segments.
The airline host sends each AL C message segment to the Gateway in this format
or asimilar format:

Addr essi ng Dat a End- of - Message Checksum
A TA Cl C2 Message- Text EOMc CcCC
EOM
EOVU
EOVpbb

ThelA (Interchange Address) and TA (Termina Address) determine the station address.

The C1 and C2 characters (a.k.a. “Command 1” and “Command 2") often specify positioning
information, indicationg where the text of the message should be displayed on aterminal.
However, the exact meaning of C1 and C2 depend on the host type, the type of device
(terminal or printer) configured on a TA, and the message type. For details, refer to the

host system’ s documentation.

118

There are four valid EOM character values. EOMi, EOMc, EOMu, and EOM pb.
Each segment must contain one of these EOM characters (preceding the Checksum at the end).
The final segment of a message typically uses the EOM c character.

The EOM characters(s) contained in the final segment of a message are called final EOMs.
The EOM characters(s) contained in a multi-segment message’ s first segment, or in any
intermediate segment, are called intermediate EOMs. Often EOMc and EOMu are used as
final EOMs, while EOMI and EOMpb are used as intermediate EOMs; however, this differs
on some systems.

The Checksum value (also called “CCC”) provides a confirmation code whereby the software receiving
amessage can validate it mathematically, to find out if the message data was corrupted during
transmission. The user application need not be concerned with CCC code calculations.

When the application sends a message, the IATE software generates checksums as needed.

When the application receives a message, the | ateRead function provides a CCC validation

result flag (a ssimple Boolean value) which the application can test.

When an application uses lateRead API function to receive message data, the returned message-buffer
contains the text of the message. The API removesthe IA and TA values before returning the data to
the application. lateRead also returns another buffer, called the “control” buffer, which contains the
C1, C2, and EOM characters, and the CCC validation indicator.

119

Appendix D: Sharing a TA

This appendix describes the Shared TA mechanism of the IATE Gateway.

An application using the IATE API connects to the airline host through
aTA Object configured at the Gateway. Message traffic passes through the
Gateway on its way from the airline host to the application, or vice versa.

A second application can ask the Gateway to “intercept” or “divert”
that message traffic. Thisisthe Gateway's“ Shared TA” mechanism.
The Shared TA mechanism's two modes have the following characteristics:

“Intercept” Mode

In the “intercept” mode, the first application retains its connection to the host, and the
second application sharesiit:

When the first application sends a message to the host, the Gateway sends a copy of the
message to the second application. Both the host and the second application receive the

message.

When the host sends a message to the first application, the Gateway sends a copy of the
message to the second application. Both the first and second applications receive the

message.

“Divert” Mode

In the “divert” mode, the Gateway diverts the messages that would normally pass
between the first application and the host, re-routing them to/from the second application

instead.

When the first application sends a message to the host, the Gateway re-routes the
message to the second application. The host does not receive it.

When the host sends a message to the first application, the Gateway re-routes the
message to the second application. The first application does not receiveit.

120

The second application can also send messages to the first application or the host.
The Gateway delivers such messages as if they had passed between the first application and the
host. For details, see the M essage Forwar ding section below.

Usage

As explained above, the Shared TA mechanism involves two applications. The first application
has opened a TA object by the norma means. The second application accesses it through the
Shared TA mechanism, by using the following procedure:

1. The second application connects to the object using 1 ateOpen with the
APlinter ceptName option:

refnum = | ateQpen (Start Code, APlinterceptNane, CbjectNane);

2. The second application uses | ateControl to select the “intercept” or “divert” mode, and
the direction of message traffic to intercept or divert:

| ateControl (StartCode, ShareComand, ShareFl ag);
The ShareCommand and Shar eFlag arguments take the following values:

ShareCommand:

This argument selects the direction of message traffic

that the second application will intercept or divert.

Use either one of the following values:
APlintrRouteOutput - for application-to-host message traffic, or
APIlintrRoutel nput - for host-to-application message traffic.

ShareFlag:
This selects the “intercept” or “divert” mode (discussed above).

Use either one of the following values:
INTRBOTH - to select the “intercept” mode, or
INTRDIVERT - to select the “divert” mode.

121

Examples:

To “intercept” messages that the first application sendsto the host,
use this lateControl call:

| ateControl (StartCode, APIintrRouteCutput, |NTRBOTH);

To “divert” messages that the first application attemptsto
send to the host, use this lateControl call:

| ateControl (StartCode, APIintrRouteCutput, |NTRD VERT);

To “intercept” messages that the host sends to the first application,
use this lateControl call:

| ateControl (StartCode, APIintrRoutelnput, |NTRBOTH);

To “divert” messages that the host attempts to send to the first application,
use this lateControl call:

|ateControl (StartCode, APIintrRoutelnput, |NTRD VERT);

The second application proceeds to receive and/or send messages
on the intercepted channel, using | ateRead and/or lateWrite.

To terminate the Shared TA mode, the second application
again uses lateControl, with the INTRNORMAL flag:

| ateControl (StartCode, APIintrRouteCutput, | NTRNORVAL);

or
| ateControl (StartCode, APlIintrRoutelnput, | NTRNORMAL);

122

Message Forwarding

In addition to intercepting or diverting host data traffic, the second application can also send messages to
the first application or the host. The Gateway delivers such messages as if they had passed between the
first application and the host.

Message Forwarding requires “intercept” mode (INTRBOTH), not “divert” mode (INTRDIVERT). If
the second application wishes to send a message to be forwarded on a connection that is currently in the
"divert" mode, the application should switch to “intercept” mode before sending the message.

Note for Macintosh Applications:

The IATE API for Macintosh automatically resets to the normal mode (INTRNORMAL)

after each message transaction. Macintosh API applications that use message forwarding must reset to
“intercept” mode (INTRBOTH) before sending each message to be forwarded.

Examples of M essage Forwar ding:

The second application sends a message which the gateway will
forward to the host (asiif it came from the first application):

char buff[] = "SOVE DATA TO THE HOST";
lateControl (refnum APlintrWitelnput, buff);

The second application sends a message which the gateway will
forward to the first application (asif it came from the host):

char buff[] = "SOVE DATA TO THE SHARED TA";
lateControl (refnum APlintrWiteCQutput, buff);

123

Sample Program

The IATE software package includes an example of a sharing application, testincp.c.
This application should be used in tandem with the sample terminal test application,
testterm.c, asfollows:

Using testter m, open a connection to an available TA object.

Run testincp using the same object name, selecting the the divert mode, as follows:

testterm -oan_obj ect _namne
testincp -oan_object nane -sl| NTRD VERT

The Gateway will divert messages that would normally pass between
the testter m application and the host. The testincp program
will receive the diverted messages.

Enter amessage into testter m, and watch testincp receive the message.
Also have the host send a message, and watch testincp receive that
message as well.

Stop testincp, and then restart it in the “intercept” mode, as follows:

testincp -oan_object _name -sl NTRBOTH

Messages can now be forwarded to the host by placing an “1” in front of
testincp keyboard entries, or to the testter m application by placing
an “O” infront of the keyboard entry.

Refer to the testincp.c source code file for further information about the sharing sample program.

To display a summary of usage information for either program, use the -h command-line option:

testincp -h

testterm-h

124

Appendix E: The IATE API for Visual Basic

This appendix describesthe IATE API for Microsoft® Visua Basic.

The IATE API DLLs for Visual Basic

ThelATE API for Visua Basic is named “iate32b.dllI”. ThisDLL isfor use with Visual Basic
only. It is separate and independent from the C-language version of the DLL, “iate32.dll”.

Because the API for Visua Basic is provided through the traditional DLL mechanism

(not aCOM or .NET object), its usage requires explicit declarations of the API functions and
their parameters. The Sample Programs discussed below include all of the required definitions.
INnoSys recommends using the Sample Programs as a starting point for developing applications
with the IATE APl in Visual Basic.

Sample Programs for Visual Basic

The IATE Sample Programs for Visual Basic have been tested with Visual Basic version 6. At
this time (2001), the Sample Programs have not been tested with other versions of Visual Basic,
and are therefore not intended for use with any earlier version, or any later version such as Visual
Basic 7 or the .NET framework.

There are two different IATE Sample Programs for Visual Basic. Thefirstisasimple ‘termina’
application with which a user can connect to an airline host, enter commands, and view
responses.

The second sample program is similar to the first, with additional features to demonstrate the IATE
Intercept Mode. (Intercept Modeisdiscussed in Appendix D: Sharinga TA, on page 120).
Aside from this difference in communication modes, the two sample programs are similar in
purpose and structure.

Each sample program for Visual Basic usesa*®Form” to present its user-interface.
(A Form isthe standard Visual Basic object to create a user-interface.)
The sample programs Forms are illustrated below.

125

The Sample Programs’ Forms

Thisisthe Form (user interface) for the first sample program:

CEETE— =1k

IATE Communications Sample

Connaction;
Gabeway | Connect |
L EivRtE |.5I|; nayyE]
Dbject: | |

Ststus: [imponneciad Cpodnaysd
. R g |

Tk bo Gered: | et |
Trwet Flecereed: Dubugging

_d &+ [iomt bog debugoeg messapes
™ Lo debugging massesges
™ Lo cetsed debospoing messages

Hehoan sy cegaminr ey s
_ | 1 e B AR e IR BT

In the first three text fields on the form, the user enters the standard parameters required for an
IATE connection: (1) the name of the IATE Gateway host, (2) a TCP/IP network service-name
or port-number (such as“ialcserver” or 1413), and (3) aclient/TA object name.

Next, the user presses the Connect button on the form, to connect to the gateway. When the user
presses the Connect button, the sample program calls the | ateOpen function to open the
connection.

After connecting, the user can enter acommand into the Text to Send field, and press the Send
button to send the command to the airline host. The program uses lateéWrite to send messages
to the host through the Gateway, and | ateRead to receive responses. Any responses received
from the host will appear in the large text box in the bottom left corner of the form.

Additional controls on the form include: awrite-lock Reset button, a configuration information
retrieval button, and diagnostic logging control buttons. All of these controls perform their
operations through the appropriate IATE API functions and supplementary Visual Basic codein
the sample programs.

The form’s code module contains the subroutines which operate al of those interactive objects
(text fields and buttons) on the form. The form’s codefileis“IATE_samplefrm”.

126

The second sample program, which demonstrates the IATE Intercept Mode,
uses adlightly different Form:

(meem [=1E

IATE Sample for Intercept Mode

Gateway: | Cormpct I
Sarvice
hjnct

Slatus

Texl Mo Semdl:
Texl Rectrned:

=] Dont log debugging messages
™ Log debugging messages
7 Log detabed detagomg meagss

Hefieh PR R R T AR
J;I e

This Form is nearly identical to the first sample’s Form, except that the Send button is replaced
with two separate buttons: Send to Host and Send to Client. The meaning of the Connect
button is also different from the first sample.

In the first three text fields on the form, the user enters the standard parameters required for an
IATE connection: (1) the name of the IATE Gateway host, (2) a TCP/IP network service-name
or port-number (such as “ialcserver” or 1413), and (3) aclient/TA object name.

Next, the user presses the Connect button on the form. When the user presses the Connect
button, the sample program calls the lateOpen function to open the connection. To establish the
Intercept Mode, the program calls the lateContr ol function with the APlintr RouteOutput and
APIlintrRoutel nput commands, and specifiesthe INTRBOTH flag for Intercept Mode.

Asinthefirst sample, the user can enter acommand into the Text to Send field, and press the
Send button to send the command to the airline host. In the Intercept Mode, the program sends
the command “on behalf” of the intercepted client (asif that client had sent the command).

Any responses received from the host will appear in the large text box in the bottom left corner
of the form. Because this program uses Intercept Mode, the host’ s responses will also reach the
intercepted client (i.e., the response was “intercepted”).

Intercept Mode is discussed further in Appendix D: Sharinga TA, on page 120.

127

Structure of the Sample Applications

The following diagram illustrates the general structure of the sample code.
The functions listed in the diagram are described on the following pages.

IATE API
Functions
(see page 122):

* |ateStart
* |ateStop
« |ateControl

* |ateRead
* lateWrite

Connection

to
Gateway

Helper Functions
(see page 124):

* innoStartGWAPI
* innoStopGWAPI

« calllateRead
« callateWrite

 setReadTimeout
* checkHostStatus
* resetLock

* sendPrinterStat

« getObjectConfiguration

* setlogging
.. EfC. ..

Timer 1

(invokes
callateRead
periodically)

User -I nterface Functions

(see page 129):

« Btn_ConnectToGateway_Click
« Btn_GetObjectConfiguration_Click

 Btn_ResetLock_Click
« Btn_SendToHost_Click

.. EfC. ..

128

17| i v pm s ey

e
o —
-—
fr—

el e ol
[PP

Using the IATE API in Visual Basic

ThelATE API for Visua Basic supports the same functions as the IATE API for the C language:
lateStart, lateOpen, lateRead, lateWrite, and lateControl. The Sample Programsinclude the
required declarations of those functions, along with definitions of some of their possible
parameters (such as the various | ateControl command codes). These declarations can be found
inthefile“IATE_API_defsbas’.

To simplify development, it is recommended that the application use an additional set of

“Helper Functions’ in order to access the API functions mentioned above. The Helper Functions
can encapsul ate the typical usage of the API functionsin the Visual Basic environment. This can
be helpful during development and may also reduce code redundancy. The Sample Programs
provide suggested Helper Functionsin thefile“IATE_API_helper.bas’.

Data Types

The IATE API for Visual Basic uses the following data types for function call parameters.

The following data types apply in parameters to the fundamental API functions
(lateStart, lateOpen, lateRead, lateWrite, lateClose, and | ateStop):

AsLong - IATE API numeric parameters are generally declared ByVal AsLong,
corresponding to the long parametersin the API for C language.

AsString - String parameters to several API functions are declared ByVal As String.

For example, the lateOpen function declaration has
two Long parameters and a String parameter:

Declare Function lateOpen Lib "IATE32b.DLL" (_
ByVal |StartCode AsLong, _

Byva ICmd AsLong, _
ByVal sBuff As String _
) AsLong

AsAny - ThevariouslateControl commands use different data typesin
the third parameter to lateControl. These data typesinclude:
Long, String, or a data-structure type. Depending on the command-code,
these may be either input to the function, or returned output.
To accomodate all of these cases, the lateControl function’s
third parameter isdeclared ByRef AsAny.

Some additional datatypes (e.g., AsInteger and As Byte) are used in parametersto the IATE
API Helper Functions for Visual Basic, as described later in this appendix.

129

IATE API Functions in Visual Basic

The lATE API functionsaredeclared in “|ATE_API _defs.bas’. Also declared in the samefile
are some common parameter values, including the various command codes for | ateControl.

Each API function’s parameters correspond directly to those of the C-language version of the
function. For more information, please refer to the discussion of the C-language version of each
function, inthe API Library Reference section of this manual.

It is recommended that the application use the Helper Functions provided with the
Sample Programs, instead of calling these API functions directly. Helper Functions
are described in the next section.

Functi on: lateStart ()
Pur pose: The first APl call required to begin using the API.

Decl are Function lateStart Lib "I ATE32b. DLL" (_
ByVal |InstallHandlers As Long,
ByVal | Dumy As Long, _
ByVal sBuff As String _

) As Long
Functi on: I at eOpen()
Pur pose: Open a connection to the | ATE Gateway via the API.

Decl are Function lateOpen Lib "I ATE32b. DLL" (_
ByVal | StartCode As Long,
ByvVal | Cnd As Long, _
ByVal sBuff As String _

) As Long
Functi on: | at eRead()
Pur pose: Read data fromthe host through the | ATE Gat eway.

Decl are Function lateRead Lib "I ATE32b. DLL" (_
ByVal | Ref Num As Long, _
ByVal MAX_BUFF_SI ZE As Long,
ByVal sBuff As String, _
ByVal innoCtrlBlock As String _
) As Long

130

Functi on: lateWite()

' Pur pose: Wite data to the host through the | ATE Gat eway.
Decl are Function lateWite Lib "I ATE32b. DLL" (_

ByVal | Ref Num As Long, _

ByVal | CommandLength As Long,

ByVal sCommand As String _

) As Long
' Functi on: I at el ose()
' Pur pose: Cl ose the connection with the | ATE Gateway via the API.

Decl are Function lateC ose Lib "I ATE32b. DLL" (_
ByVal | Ref Num As Long _

) As Long
' Functi on: lateStop()
' Pur pose: Termi nate this prograni s usage of the | ATE API.

Decl are Function lateStop Lib "I ATE32b. DLL" (_
ByVal sStartCode As Long _

) As Long
' Functi on: lateControl ()
' Pur pose: This function supports various APl control commands.

Decl are Function lateControl Lib "I ATE32b. DLL" (_
ByVal | Ref Num As Long,
ByVal | Cnmd As Long, _
ByRef sBuff As Any _

) As Long

131

“Helper Functions” in the Sample Applications for Visual Basic

The IATE API Sample Programs for Visua Basic contain several Helper Functions.
The Helper Function module code is provided in thefile“IATE_API_helper.bas’.

The Helper Functions module operates as a*“layer” between the IATE API functions and the rest
of the application code. An application can use the Helper Functions to encapsul ate typical
usage of IATE API functionsin Visual Basic.

Note: There are two different Sample Programs. The Helper Functions differ dightly
between the main Sample Program, and the alternative sample for Intercept Mode.
The following listing refers to the main sample, not the Intercept Mode sample.

Procedure: innoStartGMPI

Pur pose: Open a connection to the | ATE APlI, and then

open a connection to a TA object through the APl and Gateway.
Argunents: Gat ewayNane: Narme of | ATE Gat eway host.

Ser vi ceNane: Name of TCP/IP Service

(such as "ial cserver"),
or TCP/IP port nunber.

oj ect Nane: Narme of TA object.

Ret ur ns: "True' to indicate successful connection, or
'False' to indicate failure to connect.

Publi ¢ Function innoStart GMPI (_
ByVal gatewayNanme As String, _
ByVal serviceName As String, _
ByVal objectNane As String _

) As Bool ean

132

Procedure: innoSt opGAAPI

Pur pose: Cl ose a connection with an | ATE Gateway TA object,
' and then close our connection with the | ATE API.

' Ret ur ns: "True' if this function closed the connection, or
'False' if the connection was al ready cl osed.

Publi ¢ Function i nnoStopGAMPI () As Bool ean

Functi on: cal |l | at eRead

Pur pose: Call the lateRead APl function to retrieve
' any data that the APl has received through the
Gat eway connecti on.

! Ret ur ns: The data received, as a string

' (or the enpty string "" if no data

' has been received on this call).

' Usage: Call this frequently froma Tiner event handl er.
! Not e: If lateRead were to sit and wait for data,

' the VB GU would 'freeze' during the wait

(in the current single-threaded inplenentation).

' To prevent lateRead fromwaiting, an earlier call

to set ReadTi neout has set the | ATE read ti nmeout

to zero. lateRead will therefore return inmediately
' (returning data, if any, that the | ATE APl has

' recently received fromthe Gateway).

' Since lateRead will return imediately, we'll have to
call this function frequently to check for any

addi tional data received. For that reason, a tiner
event handler will call this function periodically.

Public Function calllateRead() As String

Functi on: calllateWite

Pur pose: Call the lateWite function to send a data message
' through the the | ATE APl and Gateway to the airline host.

' Ar gunent : nsg: The data nessage to send.

' Ret ur ns: The return code fromthe lateWite APl function.
A value |l ess than zero indicates an error.

Public Function calllateWite(ByVal nsg As String) As Integer

133

Procedure: setReadTi neout

Pur pose: Set a zero tinmeout for lateRead calls, so that
' lateRead will not block while waiting for data.
To set that tinmeout, use the |ateControl

' APl function with comand API Set TO.

' Usage: Call this once after opening a session.

' Not e: This will set a zero timeout, so that |ateRead

' will return imediately, not wait for data.

' This hel ps to keep the VB GU running snoothly, but
' we shall have to call the calllateRead() procedure
repeatedly and frequently to check and retrieve any
' data received. A Tiner event should trigger those
periodic calls to calllateRead().

See al so: Timer 1 Timer

Publ i c Sub set ReadTi meout ()

' Procedure: checkHost St atus

' Pur pose: Check the status of the gateway/host connection,
using the lateControl APl function with the
' APl Get Host St at conmand.

' Ret ur ns: "True' if the gateway/host connection

appears to be up and operational; or

' '"False' if there seens to be a possible
problemw th that connecti on.

Usage: Call this frequently froma Tiner event handl er.

Publ i ¢ Function checkHost St at us()

Procedure: resetlLock

' Pur pose: Use the APl Reset Local command, asking the | ATE API
' to reset the Keyboard-Locked status on the current session.

Public Sub resetLock()

134

Pr ocedur e:

Pur pose:

Usage:

sendPri nt er St at

Send a Printer-Stat nessage to the Gateway.

This is a required fornmality, even though we have no
printer attached to this program Because there is no
printer attached, this Printer-Stat nessage will
indicate that the printer is 'unavail able'.

Call this once after opening a session.

ic Sub sendPrinterStat()

Procedur e:

Pur pose:

Ret ur ns:

ic Function

get Obj ect Confi guration

Retrieve information about the configuration
of the currently connected TA object.

To get that information, use the |ateControl

APl function with command API Get Obj ect Confi g.

A string containing a humanly readabl e (we hope)
representati on of the object's configuration.

get Obj ect Confi guration()

Procedure:

Pur pose:

Usage:

Ar gunent :

Not e:

set Loggi ng

Send a Set-Loggi ng nessage to the Gateway.
Thi s enabl es APl debuggi ng nessages,
logged in a file nanmed "iatel og. | og".

Call this once after opening a session.

| evel : 0 to turn of f debuggi ng, otherw se
a level up to FFFF hexadeci nal (65535 deci mal)

| ATE APl debugging facilities are limted in VB

We can use API Set Api Logging (to | og the debuggi ng
nessages in a file), but we cannot use API Set Api Debuggi ng
(e.g. to output the nessages to the screen).

Publ i ¢ Sub setLoggi ng(l evel As Long)

135

Procedure: protocol Name

Pur pose: G ven an | ATE host protocol type nunber,
' return the nane of the indicated host protocol.

' Call ed by: getojectConfiguration()

Publ i ¢ Function protocol Nane(protocol Nunber As |nteger)

' Procedure: object TypeNane

' Pur pose: G ven an | ATE obj ect type nunber,
return the nane of the indicated object type.

' Call ed by: gethjectConfiguration()

Publ i ¢ Function object TypeNane(obj ect TypeNunber As | nteger)

' Procedure: gatewayTypeNanme

' Pur pose: G ven an | ATE gateway type nunber,
return the nane of the indicated gateway type.

' Call ed by: gethjectConfiguration()

Publi ¢ Function gat ewayTypeNane(gat ewayTypeNunmber As | nteger)

Procedure: |ineTypeName

Pur pose: G ven an | ATE host |ine type nunber,
' return the nane of the indicated host |ine connection protocol.

' Call ed by: gethjectConfiguration()

Public Function |ineTypeNane(lineTypeNunber As Byte)

' Procedure: i nnoShowError

' Pur pose: Set up an error message to report an | ATE APl error,
specified by an error code returned froman | ATE APl function.

Ar gunent : i nnoEr r Num The error code returned froman | ATE APl function.

' Not e: The error code nunbers used here are defined in the
' | ATE APl C-|l anguage header file "u_apierr.h".

Publ i ¢ Function i nnoShowError(ByVal innoErrNum As Long) As String

136

User-Interface Functions in the Sample Applications for Visual Basic

Each sample program for Visual Basic usesa®Form” to present its user-interface,
as discussed earlier (see “The Sample Programs Forms”, on page 126).

Following is an overview of the Visual Basic code attached to the form. This code performs the
functions assigned to each text field and button object on the form, and also uses the Hel per
functions to communicate with the Gateway and host.

Note: There are two different Sample Programs. The Helper Functions differ slightly
between the main Sample Program, and the alternative sample for Intercept Mode.
The following listing refers to the main sample, not the Intercept Mode sample.

Nare: Bt n_Connect ToGat eway_d i ck

Pur pose: Mouse-click handl er for the Connect/Di sconnect button.
This subroutine calls other subroutines to Connect or Di sconnect
fromthe airline host. This subroutine also updates the display
on the main form to show the Connected or Di sconnected status.

Public Sub Btn_Connect ToGat eway_d i ck()

Procedure: Btn_Get QbjectConfiguration_«Cick()

Pur pose: Mouse-click handl er for the Get-Configuration button.
This subroutine calls getCbjectConfiguration to obtain
informati on about the connected TA object's configuration,

Private Sub Btn_Get Obj ect Configuration_Cick()

Procedure: Btn_ResetlLock_Cick()

Pur pose: Mouse-click handl er for the Reset-Lock button.
This subroutine calls resetlLock to reset the
| ATE APl write-lock; and then turns off the
Keyboar d- Locked i ndi cator, and disables the
Reset - Lock button.

Private Sub Btn_Reset Lock_Cick()

137

Nane:

Pur pose:

Private Sub

Bt n_SendToHost _Cl i ck
Mouse-click handl er for the Send-Message button.

This subroutine uses calllateWite to send a
nessage through the Gateway to the host.

The text of the nessage cones fromthe

"Text to Send" input text box.

This function also turns off the
Keyboar d- Locked i ndi cator, and
enabl es the Reset-Lock button.

Bt n_SendToHost _Cl i ck()

Nare: Radi o_Debuggi ng0_d i ck
Pur pose: Mouse-click handlers for the first of the
t hree APl Debuggi ng node buttons:
This is the "Don't | og debuggi ng nessages" button.
Private Sub Radi o_Debuggi ng0o_d i ck()
Nare: Radi o_Debuggi ngl_d i ck
Pur pose: Mouse-click handler for the 2nd of the three

Private Sub

APl Debuggi ng node buttons. This button, |abelled
"Log debuggi ng nmessages”, enables a conmonly used set of
APl di agnosti c nessages for troubl eshooting purposes.

Radi o_Debuggi ngl_d i ck()

Nane:

Pur pose:

Private Sub

Radi o_Debuggi ng2_d i ck

Mouse-click handler for the third of the

APl Debuggi ng node buttons. This button, |abelled
"Log detail ed debuggi ng nessages"”, enables all possible
APl di agnostic nessages for troubl eshooting purposes.

Radi o_Debuggi ng2_d i ck()

138

The “Timer Object” in the Sample Applications for Visual Basic

The sample code for Visual Basic usesa“Timer” object to check for messages from the host.
The timer object periodically invokesits event handler subroutine, which uses calll ateRead
to retrieve any messages that the API has received from the Gateway and the airline host.

The reason for using atimer in thisway is that the sample programs are single-threaded.

When calll ateRead calls | ateRead, the rest of the sample program and the VB user interface are
suspended, until after lateRead returns. If the lateRead call were to wait for data before
returning, the entire program would appear to ‘freeze'.

To prevent | ateRead from waiting, the sample code calls the setRead Timeout helper function
during program startup. After setReadTimeout has set the read timeout to zero, the timer
function can use calll ateRead with minimal delay, so that the program will not ‘freeze'.

I

Procedure: Tinerl_Tiner

Pur pose: Perform frequent periodic tasks:
- Retrieve any new data received
fromthe Host through the Gateway, and
- Check the status of the Gateway/Host connection

Usage: A tiner should trigger this procedure periodically,
on an interval of one second or |ess.
This allows us to call lateRead to check for data
al nost continuously, w thout incurring any substantia
delay during the lateRead call. This rapid 'polling
technique is necessary in our current single-threaded
impl ementati on. W nust avoid delays in |ateRead,
to keep the VB GUI running snoothly.

A multi-threaded i nplenentation could be nore efficiently
driven by other "events" rather than a continuously polling
timer routine. But multi-threading would be nore conpl ex.

One way to do that would involve COM ActiveX facilities

to achieve multi-threading. O perhaps new threading features
in future versions of VB could be used. For basic | ATE
comuni cati on purposes, it's adequate (and far sinpler)

to use tinmer-driven polling in a single thread.

See al so: set ReadTi neout

Private Sub Tinerl_Tiner()

139

	Contents
	OVERVIEW OF THE API	1
	Overview of the API
	Supported Platforms
	IATE Installation Requirements
	Application Requirements
	Summary of IATE API Functions

	API Library Reference
	IateStart
	Summary:
	Purpose:
	Usage:
	Arguments:
	Returns:
	Example:

	IateOpen
	Summary:
	Purpose:
	Usage:
	Arguments:
	Returns:
	Note:
	See also:
	Example:

	IateClose
	Summary:
	Purpose:
	Usage:
	Arguments:
	Returns:
	Example:

	IateStop
	Summary:
	Purpose:
	Usage:
	Argument:
	Returns:

	IateRead
	Summary:
	Purpose:
	Usage:
	Arguments:
	Returns:
	Examples:

	IateWrite
	Purpose:
	Syntax:
	Description:
	Returns:
	Example:
	Summary:
	Purpose:
	Arguments:
	Returns:

	IateControl Commands
	APISetApiDebug
	Purpose:
	Arguments:
	See also:
	Example:

	APISetApiLogging
	Purpose:
	Arguments:
	See also:
	Example:

	APISetDebugOut
	Purpose:
	Arguments:
	Example:

	APISetOpenDelay
	Purpose:
	Arguments:
	Example:

	APISetTO
	Purpose:
	Arguments:
	Example:

	APISetMsg
	Purpose:
	Arguments:
	See Also:
	Example:

	APISetSegment
	Purpose:
	Arguments:
	See Also:
	Example:

	APISetAutoAns
	Purpose:
	Arguments:
	See Also:
	Example:

	APISetNoAns
	Purpose:
	Arguments:
	Example:

	APIGetTaProt
	Purpose:
	Arguments:
	Example:

	APIGetTaCCC
	Purpose:
	Arguments:
	Returns:
	Example:

	APIGetHostStat
	Purpose:
	Arguments:
	Returns:
	Example:

	APIGetTaStat
	Purpose:
	Arguments:
	Returns:
	See Also:
	Example:

	APIGetTaThrottle
	Purpose:
	Arguments:
	Returns:
	Example:

	APIGetObjectConfig
	Purpose:
	Arguments:
	Example:

	APISendAck
	Purpose:
	Arguments:
	Example:

	APIPrinterStat
	Purpose:
	Arguments:
	Example:

	APInoTaTimeout
	Purpose:
	Arguments:
	Example:
	See Also:

	APIGetVersion
	Purpose:
	Arguments:
	Returns:
	Example:

	APISetHeartbeat
	Purpose:
	Arguments:
	See Also:
	Examples:

	APIStart1min
	Purpose:
	See also:

	APIResetLock
	Purpose:
	Arguments:
	See also:
	Examples:

	APIResetLocal
	Purpose:
	Arguments:
	Example:

	APIForwardReset
	Purpose:
	Arguments:
	Example:

	APIWhoAmI
	Purpose:
	Arguments:
	Returns:
	Example:

	Peer-to-Peer Messages
	APIQueryApplMsg
	Purpose:
	Arguments:
	Returns:
	Example:

	APIGetApplMsg
	Purpose:
	Arguments:
	Returns:
	Example:

	APISendApplMsg
	Purpose:
	Arguments:
	Examples:

	APIForceSeperateSockets
	Purpose:
	Arguments:
	Example:

	Appendix A: Error Codes
	Error -2002: ServerUnreachable / NoServerError
	Explanation:

	Error -2003: OutOfBufferError
	Explanation:

	Error -2004: ObjectUndefined / NameIsBad
	Explanation:

	Error -2005: NameInUse
	Explanation:

	Error -2007: DataError
	Explanation:

	Error -2008: NotStartedError
	Explanation:

	Error -2009: BadVersionError
	Explanation:

	Error -2010: DirectionViolation
	Explanation:

	Error -2011: InterceptError
	Explanation:

	Error -2101: APINoFreeChannel / TooManySessions
	Explanation:

	Error -2102: APIBadChannel / InvalidRefnum
	Explanation:

	Error -2103: APIOverrunErr
	Explanation:

	Error -2201: InternalLogicError
	Explanation:

	Error -2205: HostUnreachable
	Explanation:

	Error -2207: SessionNotConfigured
	Explanation:

	Error -2208: NoSocket
	Explanation:

	Error -2209: CantConnectToServer
	Explanation:

	Error -2210: UnexpectedMsgType
	Explanation:

	Error -2211: WriteFailed
	Explanation:

	Error -2212: ReadFailed
	Explanation:

	Error -2214: OpenBlocked
	Explanation:

	Error -2215: SessionDisconnected
	Explanation:

	Error -2216: NotImplemented
	Explanation:

	Error -2217: TooMuchDataQueued
	Error -2218: TooManyConnections
	Explanation:

	Error -2404: InvalidTask
	Explanation:

	Appendix B: Background Information on the Gateway
	Terminal and Printer Device Objects
	Dynamic Objects

	Appendix C: Description of Host Traffic
	Appendix D: Sharing a TA
	“Intercept” Mode
	“Divert” Mode
	Usage
	Message Forwarding
	Sample Program

	Appendix E: The IATE API for Visual Basic
	The IATE API DLLs for Visual Basic
	Sample Programs for Visual Basic
	The Sample Programs’ Forms
	Structure of the Sample Applications

	Using the IATE API in Visual Basic
	Data Types

	IATE API Functions in Visual Basic
	“Helper Functions” in the Sample Applications for Visual Basic
	User-Interface Functions in the Sample Applications for Visual Basic
	The “Timer Object” in the Sample Applications for Visual Basic

